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What is Convex Optimization?
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http://www.youtube.com/watch?v=-nlR62Mpo-A

What is Gradient Descent?

X = 0.480 agrodient =~ @,960 — .
Current Posiclion
—t Lrodiemt

-+ Update Step
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http://www.youtube.com/watch?v=huyBoeTkm8I

What is Optimization?

e Definition of Optimization

e Optimization involves selecting the best element from a set of
available alternatives.

e In mathematical terms, this process is often associated with finding
the minimum or maximum of a function.
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Importance in Data Science

e Core Component

o Optimization is the backbone of machine learning.

o Enables models to learn from data by systematically improving
performance according to specified metrics (i.e., loss function).

e Objective Function

o Machine learning models are trained by minimizing or maximizing an
objective function, also known as a loss or cost function.

o This function measures the error or the discrepancy between the predicted
values and the actual values in the training data.
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Convex Optimization

Types of Optimization Problems | ===

e CONVEX OPTIMIZATION PROBLEMS o0 ]

fix)

e Definition: An optimization problem where the objective function is =
a convex function and the feasible set is a convex set.

e Characteristics: Unique global minimum; any local minimum is

also a global minimum, simplifying the search for solutions. o
3 s : ; : ; 0
e Example: Least squares linear regression, where the function to - ’of -
. . . . . . on-Convex Imization
minimize is a quadratic function of the parameters. 1 R pg“x‘
« Path from x=-1
e NON-CONVEX OPTIMIZATION PROBLEMS o e

e Definition: An optimization problem where the objective function or
the feasible set is non-convex.

e Characteristics: Potential for multiple local minima and possibly
saddle points, making these problems more challenging to solve.

e Example: Neural network training, where the loss landscape is
highly non-linear and contains many local minima. ’
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Convex Optimization Problems in Data Science

e Linear Regression Ve L
= N;(yz — )
e Problem: Minimize the sum of squared residuals (MSE)
between observed values and values predicted by a linear

model.

e Nature: Convex problem as the objective function is a
quadratic function, ensuring a single global minimum.

e Logistic Regression:

e Problem: Maximize the likelihood of correctly predicting
binary outcomes using a logistic function.
) L(y,p) = — [ylog(p) + (1 — y) log(1 — p)]
e Nature: Convex problem due to the log-likelihood function
being concave; minimization of its negative is a convex
optimization problem.
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Defi n itio n Of Co nveXity Visualization of a Convex Function

4.0 — f{x) =x"2
== f(Ax + (1-A)y)
—e— Line segment between f(x) and f(y)
351 === Projection on Axes
3.0
25
* Concept Overview: Z350 |
T e !
- . N - . . H
* Convex Function: A function f : R" — R is convex if, forall z,y € dom(f), and forany Ain . E
' 1
the interval [0, 1], i
1.0 E
1
FOz+ (1= A)y) < Af(@) + (1 - Nf() |
1
1
1
* Geometric Interpretation: 0O —+——+—— 71— 1] T ! — 8
s _ . S =2.0 =15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
* The line segment connecting any two points on the graph of f does not lie below the graph at X
any point between these two points.
* Importance in Optimization: 1. Thecurve f(z) = x? shown as a solid line, which represents the function over the interval from
. ——— . s g o . . - 2to2.
.
Understanding convexity is critical as it simplifies optimization problems significantly by o ThiIns searrantsannectng e polnts (&, 7)) and (5, 140 or s =15 andy = 1.5
enSUfing that every local minimum is a global minimum. shown as blue points connected by a line. This line demonstrates the linear combination of f(z)
and f(y).

3. The dashed red line, which plots f(Az + (1 — A)y) for X in the interval [0, 1]. This represents
the function value at the convex combinations of z and y.

As you can see from the plot, the segment (in blue) lies above the graph of the function f(z) =
z? (inred), illustrating that f(Az + (1 — A)y) < Af(z) + (1 — A) f(y) forall X between O
and 1, which confirms that f(z) = 22 isindeed a convex function. b4
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Examples of Convex Functions

Quadratic Function x2 Exponential Function e*
4.0
7
23 .
3.0
5
25
* Quadratic Functions: 220 g
. i p— 2 H : 0 . " St . 15 ks
Example: f(z) = x*, which is convex because the second derivative f”(z) = 2 is always
1.0 g
positive. s
.. 1
* Exponential Functions: 00 .
- o = - o e -20 -15 -10 =05 0.0 0.5 1.0 15 2.0 -20 -15 -10 -05 00 05 10 15 2.0
. =€, r)=e i x X
* Example: f(x ¢ with its second derivative f” * also being positive
Logarithmic Function log(x) Linear Function x
* Logarithmic and Linear Functions: 20
0.5
* Example: f(z) = log(z) (convex over z > 0). L
0.0 1.0
; 2 sobfacesom : o , ’
* Linear Function Example x -+ bis convex and concave (it is linear)
-0.5 =
z Z o0
-1.0
-0.5
-15 -1.0
56 -15
-2.0
0.25 0.50 0.75 1.00 125 150 175 2.00 20 1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0
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Examples of Non-Convex Functions

Cubic Function x>

[

- Cubic Function: f(z) = z* ’
* This function has a point of inflection at = 0, which means it changes curvature from
concave to convex, making it non-convex as a whole.

fix)

N

- Sinusoidal Function: f(z) = sin(z)
* Asinusoidal function oscillates between positive and negative values, with its peaks and -
troughs making it clearly non-convex, as the line segments connecting points across a peak N

or trough will lie below the curve. :

. Absolute Value Function: f(z) = |z| S0 ds do W5 o0 o5 10 15 20

2

C

X

* Although it might appear linear and convex at first glance, the absolute value function has a Sinusoidal Function sin(x)

sharp point at z = 0, which violates the smoothness condition required for convex functions.
It is technically neither convex nor concave due to this cusp.
4. Polynomial Function with Multiple Roots: f(z) = z* — z2

* This function, due to its multiple turning points, exhibits both concave and convex intervals,

fix)
°
(=]
8

making it non-convex.

-0.25

- Exponential Minus Quadratic: f(z) = e * — a?

(62

—0.50

* This function has both exponential decay and quadratic growth components, creating

-0.75

multiple inflection points and thus making it non-convex.

-1.00
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Unconstrained vs. Constrained Optimization

16 # Function to find the minimum using a simple gradient descent approach
17 def find_minimum_unconstrained(x_start, learning_rate, iterations):

Definitions & Key Features: 18 x = x_start
19 for i in range(iterations):
. .. . 20 x -= learning_rate * df(x)
e Unconstrained Optimization: 2 return x
22
¢ No Limits: Optimizes a function f(x) anywhere within its domain. 23 # Function to find the minimum considering the constraint x <= 1
24 def find_minimum_constrained(x_start, learning_rate, iterations):
¢ Methods: Uses simpler methods like Gradient Descent. 25 A
26 for i in range(iterations):
5 e Pt 27 x_new = x — learning_rate * df(x)
® conStralned optlmlzatlon' 28 if g(x_new) <= @: # Check if the new x satisfies the constraint
. . . . . " 29 = x_
« With Conditions: Must satisfy additional constraints like g(z) < 0. 20 o
" < > . 2un 31 break # Stop if the constraint is violated
* Methods: Requires complex techniques such as Lagrangian Multipliers or KKT Conditions. 32 return x
33

EXA M P I E Unconstrained vs Constrained Optimization
T
— fix) =x2-4x+4

—-=- Constraintx=1
81 @ Unconstrained Min at x=2.00
@ Constrained Min at x=0.99

Function and Constraints

We'll use the function f(z) = @ — 4a + 4 for both cases: °1

f(x)

1. Unconstrained Optimization: We'll find the minimum of the function over its entire domain. 4
2. Constrained Optimization: We'll add a constraint g(a:) = & — 1 < 0, which means we're only
allowed to find the minimum where z < 1. 21
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Unconstrained vs. Constrained Optimization

Contrast:

e Freedom: Unconstrained has complete freedom in variable choices; Constrained is limited by
specific rules.

* Solution Space: Unconstrained searches the entire domain; Constrained focuses on the
feasible set.

Practical Application:

* Unconstrained: Parameter optimization in algorithms.

* Constrained: Resource allocation within budget limits.

Conclusion:

e The choice between them depends on the problem constraints and the desired outcomes.
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f(x)

16

# Function to find the minimum using a simple gradient descent approach
def find_minimum_unconstrained(x_start, learning_rate, iterations):
x = x_start
for i in range(iterations):
x -= learning_rate * df(x)
return x

# Function to find the minimum considering the constraint x <= 1
def find_minimum_constrained(x_start, learning_rate, iterations):
x = x_start
for i in range(iterations):
x_new = x — learning_rate * df(x)
if g(x_new) <= @: # Check if the new x satisfies the constraint
X = X_new
else:
break # Stop if the constraint is violated
return x

Unconstrained vs Constrained Optimization

T
— fix)=x?-4x+4

—=-- Constraintx=1
@ Unconstrained Min at x=2.00
@ Constrained Min at x=0.99
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Unconstrained Optimization Techniques

1. Gradient Descent:
e Mathematical Concept: Update formula:

Tpew — Told — avf(mold)

Here, « is the step size,and V f (a:) is the gradient or slope of the function at x.
¢ Simple Explanation: Like walking downhill, this method takes steps proportional to the
steepness of the hill to reach the lowest point. The steeper the hill, the bigger the step.
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Intuition behind gradient descent

What is Gradient Descent?

* Gradient Descent is an optimization algorithm used to minimize a function by iteratively
moving towards the minimum value of the function.

How Does It Work?

o Step-by-Step Process:

1. Start with an initial guess for the value of the parameter(s).

2. Calculate the Gradient: Determine the gradient (the slope of the function) at the current
point.

3. Update the Parameter(s): Adjust the parameter(s) in the direction opposite to the gradient
to move towards the minimum.

Tnew = Told — avf(xold)

Where « is the learning rate, controlling the step size.
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Unconstrained vs. Constrained Optimization

Definition & Mechanism:
* Gradient Descent: Minimizes a function by updating variables in the direction opposite to the
gradient.

Tnew = Told — avf(zold)

Key Features:

« Simplicity: Easy to implement; requires only the gradient computation.

» Efficiency: Directly targets the steepest path to reduce the function value.
Ideal for:

* Unconstrained Scenarios: No external conditions affect the descent process.

Applications:

e Machine Learning: Training models by minimizing error functions.
e Economic Modeling: Finding cost-effective strategies.
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https://docs.google.com/file/d/1bE4UqOoYKVTEtbexi2yuW-IwEsBaPiLO/preview

Unconstrained vs. Constrained Optimization

Loss Over Time
18

Current Loss: 0.00

15 20 25 30
Iteration

CS313: INTRODUCTION TO DATA SCIENCE CHAPTER 4: CONVEX OPTIMIZATION ANIS KOUBAA | APRIL 2024



https://docs.google.com/file/d/1Bao2-fwMzF2v4w8gbfFHrrvar6qkvIRG/preview

Unconstrained vs. Constrained Optimization

Loss Over Time
18

Current Loss: 0.00

15 20 25 30
Iteration
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https://docs.google.com/file/d/1Bao2-fwMzF2v4w8gbfFHrrvar6qkvIRG/preview

Mathematical Foundation of Gradient Descent

Objective:

 To minimize a function f(x), where x can be a vector of parameters.

Derivation of the Update Rule:

1. Taylor Expansion:
e To understand how the function f changes, we consider the Taylor expansion around a
point x:

flz+ Az) = f(z) + Vf(z) Az + %AmTHAa:

Here, V f () is the gradient of f at x, and H is the Hessian matrix of second derivatives.
2. Neglect Higher-Order Terms:
e For small changes Az, the higher-order terms (like the Hessian term) become negligible,
simplifying to:

f(z + Az) = f(z) + Vf(z) Az
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Mathematical Foundation of Gradient Descent

o0 ( 1))]

2n+l i d
sinx = =r——+—=——":-- for all =
; 2n + 1)' 3! 5!
0 (—1)" o mz :1:4
cosa:—z:o(zn)!:c —]_—-?—{-F—.. for all =
>\ By, (—4)" (1 —4") , 3 2x° 71-
tan:c=§ (2n)! x =:c+?+1—5+--- for|:c|<5
= ( 1 )" By, In x4 5z ™
secx=§ ) =1+?+§+--- forl:c|<5
2 2n)! . 3 325
arcsinm=z - (2 ) p2nt] =T — o e for |z| <1
— 4" (n!)*(2n + 1) 6 40
arccos & = % — arcsin
< 2n)! 5 328
:E_z ( ) 2n+1 :E_m_z__i_... forlmlil
2 4" (n!)?(2n+1) 2 6 40
o0 1)" 3 )
arctanr—zz(n_gl antl =a‘—%+%— for |z| <1, @ # =i
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Mathematical Foundation of Gradient Descent

3. Descent Direction:
o Todecrease f,we choose Az suchthat f(z + Ax)isless than f(z). The most effective
direction to decrease f is opposite to the gradient, V f(z):

Az = —nV f(z)

where 7) (eta) is a small positive scalar known as the learning rate.
4. Update Rule:
e Substituting A in the simplified Taylor expansion:

fle —nVf(z)) = f(z) - nVf(x)" V()

e SinceVf (a:)TV f () is always non-negative (it's the square of the gradient norm), the
function value decreases if 77 is chosen properly.
5. Gradient Descent Formula:
e The update rule for z to minimize f becomes:

Tpew = T — TIVf(ﬁ)

 Eachiteration moves z in the direction that most reduces f.
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Gradient Descent Algorithm

Algorithm 3 Gradient Descent

1: Input: Loss function f, gradient V f, initial weights wjn;t, learning rate a;,
tolerance tol, maximum iterations max_iters
Output: Optimized weights w
Initialize: w < Wipnit
Initialize: iter < 0
Initialize: converged < False {Begin the optimization process}
while not converged and iter < max_iters do
gradient < V f(w) {Compute the gradient of the loss function with re-
spect to weights}
8: w + w — « X gradient {Adjust weights to minimize the loss, moving
against the gradient}
9: if ||gradient| < tol then
{Check if the gradient is small enough to assume
convergence fconverged < True
10:11:  end if
12:  iter « iter + 1 {Update iteration counter}
13: end while
14: return w {Return the optimized weights} =0
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