

CS316: INTRODUCTION TO AI AND DATA SCIENCE

CHAPTER 8 CONVEX OPTIMIZATION

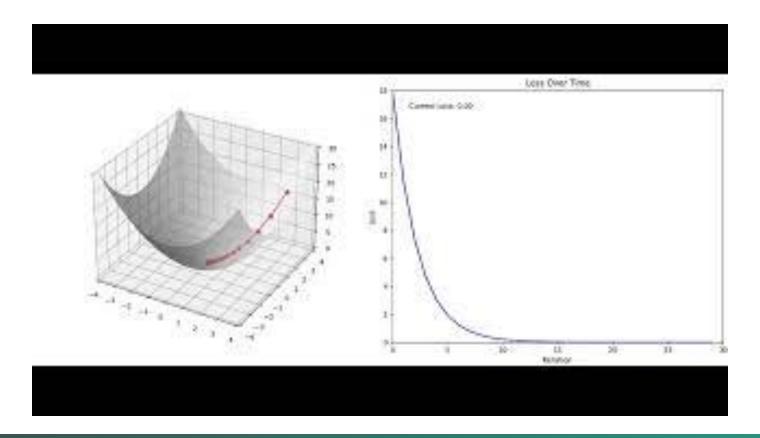
LECTURECONVEX OPTIMIZATION

Prof. Anis Koubaa

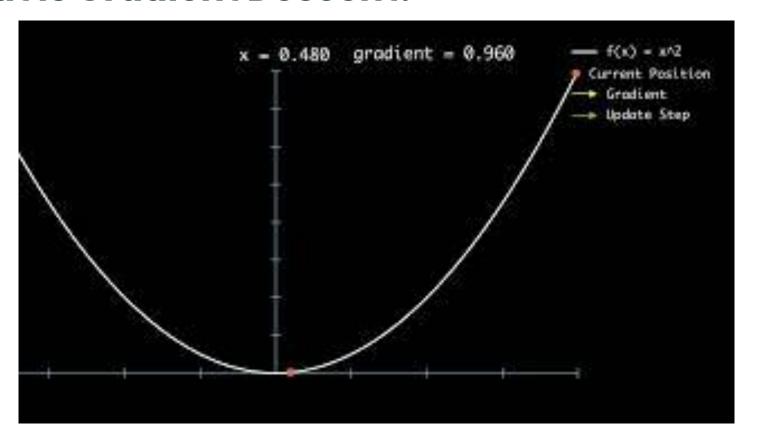
Nov 2024

www.riotu-lab.org

What is Convex Optimization?



What is Gradient Descent?



What is Optimization?

Definition of Optimization

- Optimization involves selecting the best element from a set of available alternatives.
- In mathematical terms, this process is often associated with finding the minimum or maximum of a function.

Importance in Data Science

Core Component

- Optimization is the backbone of machine learning.
- Enables models to learn from data by systematically improving performance according to specified metrics (i.e., loss function).

Objective Function

- Machine learning models are trained by minimizing or maximizing an objective function, also known as a loss or cost function.
- This function measures the error or the discrepancy between the predicted values and the actual values in the training data.

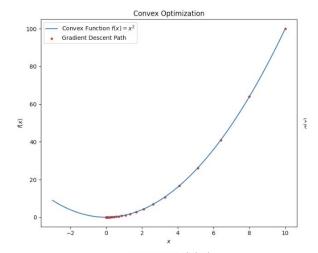
Types of Optimization Problems

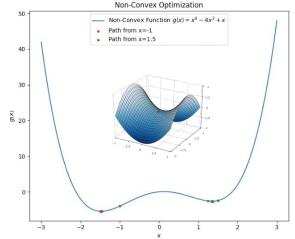
CONVEX OPTIMIZATION PROBLEMS

- Definition: An optimization problem where the objective function is a convex function and the feasible set is a convex set.
- **Characteristics:** Unique **global minimum**; any **local minimum** is also a global minimum, simplifying the search for solutions.
- **Example:** Least squares linear regression, where the function to minimize is a quadratic function of the parameters.

NON-CONVEX OPTIMIZATION PROBLEMS

- **Definition:** An optimization problem where the **objective function** or the feasible set is **non-convex**.
- Characteristics: Potential for multiple local minima and possibly saddle points, making these problems more challenging to solve.
- **Example: Neural network** training, where the **loss landscape** is **highly non-linear** and contains **many local minima**.





Convex Optimization Problems in Data Science

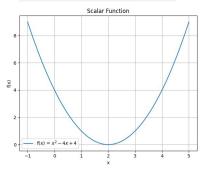
• Linear Regression

- Problem: Minimize the sum of squared residuals (MSE) between observed values and values predicted by a linear model.
- Nature: Convex problem as the objective function is a quadratic function, ensuring a single global minimum.

Logistic Regression:

- **Problem: Maximize** the **likelihood** of correctly predicting binary outcomes using a logistic function.
- **Nature:** Convex problem due to the **log-likelihood** function being concave; minimization of its negative is a convex optimization problem.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$



$$L(y, \hat{p}) = -[y \log(\hat{p}) + (1 - y) \log(1 - \hat{p})]$$

CHAPTER 3 CONVEX OPTIMIZATION

LECTURE

CONVEX OPTIMIZATION

CONVEX FUNCTIONS

CS313: INTRODUCTION TO DATA SCIENCE

Prof. Anis Koubaa

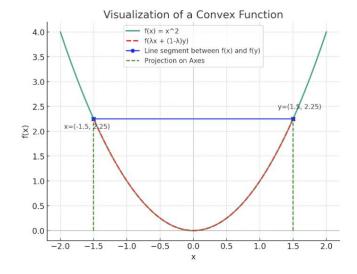
Definition of Convexity

Concept Overview:

• Convex Function: A function $f:\mathbb{R}^n o\mathbb{R}$ is convex if, for all $x,y\in\mathrm{dom}(f)$, and for any λ in the interval [0, 1],

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

- · Geometric Interpretation:
 - The line segment connecting any two points on the graph of f does not lie below the graph at
 any point between these two points.
- Importance in Optimization:
 - Understanding convexity is critical as it simplifies optimization problems significantly by ensuring that every local minimum is a global minimum.



- 1. The curve $f(x)=x^2$, shown as a solid line, which represents the function over the interval from -2 to 2.
- 2. The line segment connecting the points (x, f(x)) and (y, f(y)) for x = -1.5 and y = 1.5, shown as blue points connected by a line. This line demonstrates the linear combination of f(x) and f(y).
- 3. The dashed red line, which plots $f(\lambda x+(1-\lambda)y)$ for λ in the interval [0, 1]. This represents the function value at the convex combinations of x and y.

As you can see from the plot, the segment (in blue) lies above the graph of the function $f(x)=x^2$ (in red), illustrating that $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ for all λ between 0 and 1, which confirms that $f(x)=x^2$ is indeed a convex function. [-]

Examples of Convex Functions

Quadratic Functions:

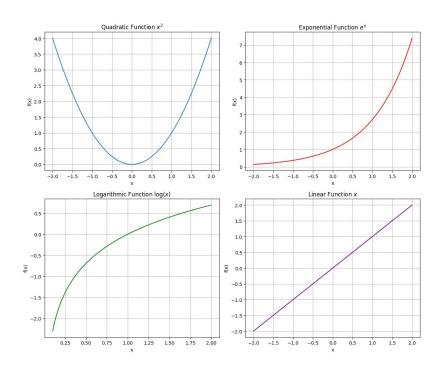
• Example: $f(x) = x^2$, which is convex because the second derivative f''(x) = 2 is always positive.

Exponential Functions:

• Example: $f(x) = e^x$, with its second derivative $f''(x) = e^x$ also being positive.

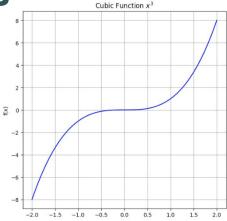
. Logarithmic and Linear Functions:

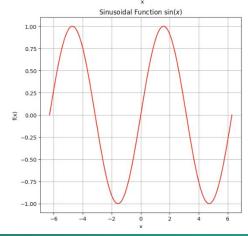
- Example: $f(x) = \log(x)$ (convex over x > 0).
- Linear Function Example: f(x) = ax + b is convex and concave (it is linear).



Examples of Non-Convex Functions

- 1. Cubic Function: $f(x) = x^3$
 - This function has a point of inflection at x=0, which means it changes curvature from concave to convex, making it non-convex as a whole.
- 2. Sinusoidal Function: $f(x) = \sin(x)$
 - A sinusoidal function oscillates between positive and negative values, with its peaks and troughs making it clearly non-convex, as the line segments connecting points across a peak or trough will lie below the curve.
- 3. Absolute Value Function: f(x) = |x|
 - Although it might appear linear and convex at first glance, the absolute value function has a sharp point at x=0, which violates the smoothness condition required for convex functions. It is technically neither convex nor concave due to this cusp.
- 4. Polynomial Function with Multiple Roots: $f(x) = x^4 x^2$
 - This function, due to its multiple turning points, exhibits both concave and convex intervals, making it non-convex.
- 5. Exponential Minus Quadratic: $f(x) = e^{-x} x^2$
 - This function has both exponential decay and quadratic growth components, creating multiple inflection points and thus making it non-convex.





CHAPTER 3 CONVEX OPTIMIZATION

LECTURE

CONVEX OPTIMIZATION

Optimization techniques for convex functions

CS313: INTRODUCTION TO DATA SCIENCE

Prof. Anis Koubaa

Definitions & Key Features:

- · Unconstrained Optimization:
 - No Limits: Optimizes a function f(x) anywhere within its domain.
 - . Methods: Uses simpler methods like Gradient Descent.
- · Constrained Optimization:
 - With Conditions: Must satisfy additional constraints like $g(x) \leq 0$.
 - . Methods: Requires complex techniques such as Lagrangian Multipliers or KKT Conditions.

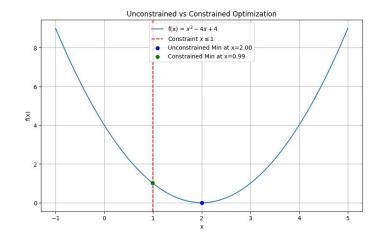
EXAMPLE

Function and Constraints

We'll use the function $f(x) = x^2 - 4x + 4$ for both cases:

- 1. Unconstrained Optimization: We'll find the minimum of the function over its entire domain.
- 2. Constrained Optimization: We'll add a constraint $g(x) = x 1 \le 0$, which means we're only allowed to find the minimum where $x \le 1$.

```
# Function to find the minimum using a simple gradient descent approach
    def find minimum unconstrained(x start, learning rate, iterations):
         x = x start
         for i in range(iterations):
             x \rightarrow learning rate * df(x)
22
    # Function to find the minimum considering the constraint x \le 1
     def find_minimum_constrained(x_start, learning_rate, iterations):
         x = x start
26
         for i in range(iterations):
27
             x_{new} = x - learning_rate * df(x)
28
             if q(x new) \le 0: # Check if the new x satisfies the constraint
29
30
             else:
                 break # Stop if the constraint is violated
31
32
         return x
33
```



Contrast:

- Freedom: Unconstrained has complete freedom in variable choices; Constrained is limited by specific rules.
- Solution Space: Unconstrained searches the entire domain; Constrained focuses on the feasible set.

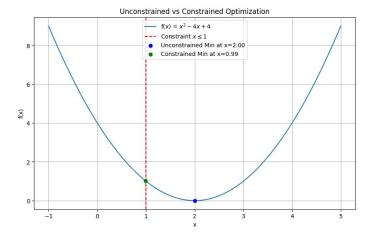
Practical Application:

- · Unconstrained: Parameter optimization in algorithms.
- Constrained: Resource allocation within budget limits.

Conclusion:

• The choice between them depends on the problem constraints and the desired outcomes.

```
16 # Function to find the minimum using a simple gradient descent approach
    def find minimum unconstrained(x start, learning rate, iterations):
        x = x start
        for i in range(iterations):
            x \rightarrow learning_rate * df(x)
22
23 # Function to find the minimum considering the constraint x \le 1
    def find_minimum_constrained(x_start, learning_rate, iterations):
        x = x start
26
        for i in range(iterations):
27
             x_{new} = x - learning_rate * df(x)
28
            if q(x new) \le 0: # Check if the new x satisfies the constraint
29
30
            else:
31
                 break # Stop if the constraint is violated
32
        return x
33
```



Unconstrained Optimization Techniques

1 Gradient Descent:

Mathematical Concept: Update formula:

$$x_{
m new} = x_{
m old} - lpha
abla f(x_{
m old})$$

Here, α is the step size, and $\nabla f(x)$ is the gradient or slope of the function at x.

 Simple Explanation: Like walking downhill, this method takes steps proportional to the steepness of the hill to reach the lowest point. The steeper the hill, the bigger the step.

CHAPTER 3 CONVEX OPTIMIZATION

LECTURE

CONVEX OPTIMIZATION

CS313: INTRODUCTION TO DATA SCIENCE

Prof. Anis Koubaa

Gradient Descent

Intuition behind gradient descent

What is Gradient Descent?

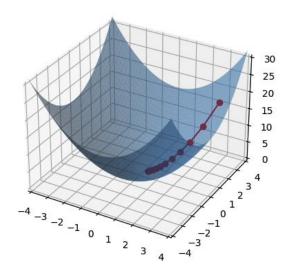
Gradient Descent is an optimization algorithm used to minimize a function by iteratively
moving towards the minimum value of the function.

How Does It Work?

- Step-by-Step Process:
 - 1. Start with an initial guess for the value of the parameter(s).
 - Calculate the Gradient: Determine the gradient (the slope of the function) at the current point.
 - 3. **Update the Parameter(s)**: Adjust the parameter(s) in the direction opposite to the gradient to move towards the minimum.

$$x_{
m new} = x_{
m old} - lpha
abla f(x_{
m old})$$

Where α is the learning rate, controlling the step size.



Definition & Mechanism:

 Gradient Descent: Minimizes a function by updating variables in the direction opposite to the gradient.

$$x_{
m new} = x_{
m old} - lpha
abla f(x_{
m old})$$

Key Features:

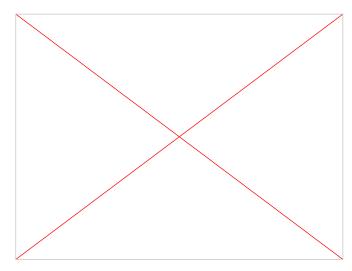
- Simplicity: Easy to implement; requires only the gradient computation.
- Efficiency: Directly targets the steepest path to reduce the function value.

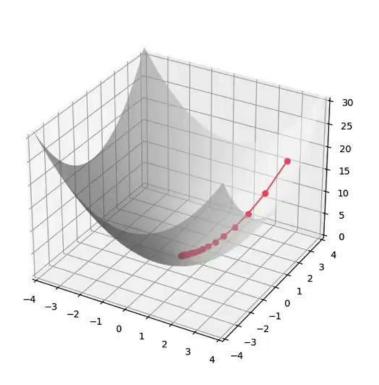
Ideal for:

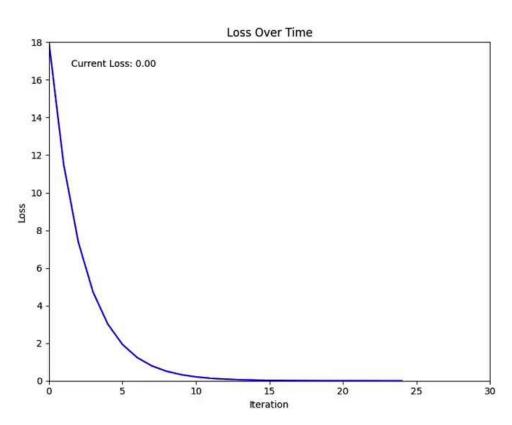
Unconstrained Scenarios: No external conditions affect the descent process.

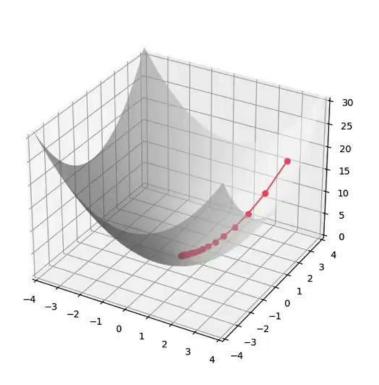
Applications:

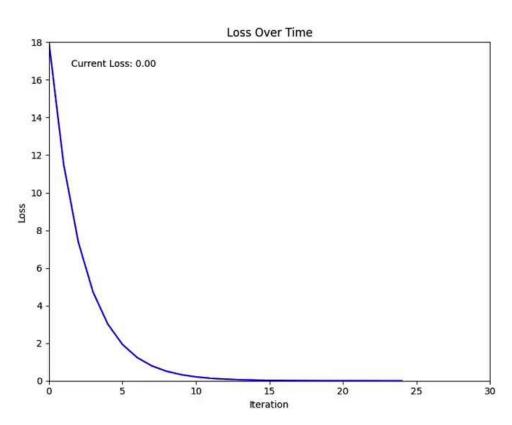
- · Machine Learning: Training models by minimizing error functions.
- Economic Modeling: Finding cost-effective strategies.











Mathematical Foundation of Gradient Descent

Objective:

• To minimize a function f(x), where x can be a vector of parameters.

Derivation of the Update Rule:

1. Taylor Expansion:

 To understand how the function f changes, we consider the Taylor expansion around a point x:

$$f(x+\Delta x)pprox f(x)+
abla f(x)^T\Delta x+rac{1}{2}\Delta x^TH\Delta x$$

Here, $\nabla f(x)$ is the gradient of f at x, and H is the Hessian matrix of second derivatives.

2. Neglect Higher-Order Terms:

• For small changes Δx , the higher-order terms (like the Hessian term) become negligible, simplifying to:

$$f(x+\Delta x)pprox f(x)+
abla f(x)^T\Delta x$$

Mathematical Foundation of Gradient Descent

Mathematical Foundation of Gradient Descent

3. Descent Direction:

• To decrease f, we choose Δx such that $f(x + \Delta x)$ is less than f(x). The most effective direction to decrease f is opposite to the gradient, $\nabla f(x)$:

$$\Delta x = -\eta \nabla f(x)$$

where η (eta) is a small positive scalar known as the learning rate.

4. Update Rule:

• Substituting Δx in the simplified Taylor expansion:

$$f(x - \eta \nabla f(x)) pprox f(x) - \eta \nabla f(x)^T \nabla f(x)$$

• Since $\nabla f(x)^T \nabla f(x)$ is always non-negative (it's the square of the gradient norm), the function value decreases if η is chosen properly.

5. Gradient Descent Formula:

The update rule for x to minimize f becomes:

$$x_{
m new} = x - \eta
abla f(x)$$

Each iteration moves x in the direction that most reduces f.

Gradient Descent Algorithm

Algorithm 3 Gradient Descent

1: **Input:** Loss function f, gradient ∇f , initial weights w_{init} , learning rate α , tolerance tol, maximum iterations max_iters 2: Output: Optimized weights w 3: Initialize: $w \leftarrow w_{\text{init}}$ 4: Initialize: iter ← 0 5: **Initialize:** converged ← False {Begin the optimization process} 6: while not converged and iter < max_iters do 7: gradient $\leftarrow \nabla f(w)$ (Compute the gradient of the loss function with respect to weights} $w \leftarrow w - \alpha \times \text{gradient}$ {Adjust weights to minimize the loss, moving against the gradient} 9: **if** $\|\text{gradient}\| < \text{tol then}$ {Check if the gradient is small enough to assume convergence converged \leftarrow True end if 10:11: 12: iter \leftarrow iter + 1 {Update iteration counter} 13: end while 14: **return** w {Return the optimized weights} =0