
Adapted from:
- ESTP course on Big Data Sources – Web, Social Media and Text Analytics, Olav ten Bosch, Statistics
Netherlands
- Beautiful Soup: Build a Web Scraper With Python:

https://realpython.com/beautiful-soup-web-scraper-python

Web scraping tools

Dr. Adel Ammar

Data Science 2024

Outline

• Introduction

• Scraping tools

• Some scraping knowledge

• Web Scraping with Beautiful Soup in Python

2

Introduction (1)

• Web scraping is the automated process of extracting
data from websites, often using scripts or programs.

• This technique enables users to gather large volumes
of information efficiently, which can be utilized for
analysis, research, or integration into applications.

• The incredible amount of data on the Internet is a rich
resource for any field of research or personal interest.
To effectively harvest that data, you’ll need to become
skilled at web scraping.

3

Introduction (2)

• The web scraping process involves carefully inspecting
data sources, extracting raw HTML content, and
parsing it to locate relevant information.

• There are many different tools for scraping available,
which differ in their functionality and use.

• Tools and frameworks come and go, choose the one
that fits the job.

• Scraping is not like typical IT. The life cycle (design,
develop, test, maintain) is much shorter, it might not
even be a cycle (one time use).

4

Introduction (3)

• Any tool is useless without some basic knowledge
of web technology and internet experience, so we
provide you some.

• At the end of this session we will do a simple
scraping exercise with Python libraries for web
scraping.

5

Introduction (4)

• We make a rough distinction between:

• Scraping: the actual extraction of data / information
from a web page

• Crawling: following hyperlinks on the internet to
traverse multiple pages and / or sites

• Search: using (third party) search engines (such as
Google) automatically to find information on the web

• Many tools offer a mix of these

6

Reasons for Web Scraping

• Organizations utilize web scraping to aggregate
data, monitor market trends, gather competitive
intelligence, or automate routine tasks such as
data entry.

• This practice allows businesses to obtain insights
that drive strategic decisions and operational
efficiencies.

7

Challenges of Web Scraping

• Web scraping can face various challenges, including
diverse website structures, frequent changes in
page layouts, and legal issues concerning data
usage.

• Unstable scripts are a realistic scenario, as many
websites undergo active development.

• The scrapers you’ll build will probably require constant
maintenance.

• Additionally, some sites implement anti-scraping
measures to protect their content, limiting
accessibility.

8

Scraping tools (1)

• iMacros (officially discontinued as of November 30, 2023):

• Available for quite some years

• Point and click (record and replay) as well as coding via
API (Application Programming Interface)

• Browser add-in as well as standalone program

• Type of functionality: scrape, automate repetitive tasks on
web pages (such as data extraction, form filling, and web
testing).

• Free and commercial version

• Easy to start with

9

Screendump Imacros(2)

10

iMacros: generated code

11

The script language is

specific to iMacros and

allows users to interact

with web elements using

commands like TAG,

EXTRACT, and SAVEAS.

Scraping tools (2)

• Scrapy(scrapy.org):

• Python-based scraping and crawling framework

• More IT oriented: coding skills required

• Open source

• Large user community

• Used by some National Statistical Institutes for
various scraping tasks

12

Scrapy example

13

Scraping tools (3)

• Import.io:

• Point and click and coding

• Fully web-based and hosted scraping

• Type of functionality: scrape

• Free and commercial licenses

14

Screendump ImportIO

15

Screendump ImportIO

16

NEW!

Reduced price

finally…

Dinner in your own
garden!

Screendump ImportIO

17

Scraping tools (4): Selenium

• Selenium is a popular tool for automating web
browsers. It allows users to write scripts that
interact with web pages, mimicking user actions
like clicking, form submission, and navigation.

• Key Features:

• Supports multiple programming languages (Python,
Java, JavaScript, etc.)

• Works with different browsers (Chrome, Firefox, Safari)

• Useful for web scraping, automated testing, and task
automation

18

Scraping tools (4): Selenium

• Advantages: Handles dynamic content,
JavaScript rendering, and more complex web
interactions compared to static scraping tools.

• Example Use: Automating form submissions,
scraping data from JavaScript-heavy pages.

19

Scraping tools (5)

• There are many more, such as:

• Nutch for crawling (Apache, java)

• An extensive list is available on:

https://github.com/lorien/awesome-web-scraping

• Scraping tools by Statistics Netherlands:

• CBS Robot Framework

• CBS Robottool, a tool for detecting changes on
websites

20

https://github.com/lorien/awesome-web-scraping

Some scraping knowledge (1)

• HTTP: the communication protocol

• HTML: the language in which web pages are
defined

• JS: javascript (code executing in the browser)

• CSS: style sheets, how web pages are styled.
Important, but does not contain data.

• JPG, PNG, BMP: images, usually not interesting

• CSV / TXT / JSON / XML: data, interesting !!!

21

Some scraping knowledge (2)

• Before initiating a scrape, it's crucial to understand the
structure of the target website.

• Use browser developer tools to inspect elements
(Ctrl+Shift+I), locate data, and decipher URL components,
ensuring a clear approach to extracting relevant information.

22

Some scraping knowledge (3)

• Analyze a website:

• For example using firebug in Firefox or Web developer
extensions in Chrome

• Keep an eye on the format of a hyperlink:

• Fictitious example:

http://www.example.com/getdata?subject=books&display=lab

el,price

• The parameters may be useful for scraping

23

Beautiful Soup: Web Scraping
with Python

24

Why Use Python for Web Scraping?

• Readability: Python's syntax is clean and easy
to understand.

• Versatility: It's a general-purpose language with
a vast ecosystem of libraries.

• Powerful Libraries:

• requests: Simplifies HTTP requests.

• Beautiful Soup: Parses HTML and XML documents.

25

Overview of Python Libraries

• Python provides several robust libraries for web
scraping.

• Two essential tools are Beautiful Soup for parsing
HTML and the Requests library for handling HTTP
requests.

• Requests simplifies the process of making HTTP
requests, while Beautiful Soup excels at parsing
and manipulating HTML data.

• Together, they form a robust ecosystem for
extracting data from websites efficiently.

26

Introducing Beautiful Soup

• Definition: Beautiful Soup is a Python library for parsing HTML
and XML documents.

• Parsers like Beautiful Soup help in interpreting the raw HTML
content extracted.

• By targeting specific tags, class names, and IDs, users can
isolate pertinent data and simplify the process of extracting
relevant information from the markup.

• Key Features:

• Navigates HTML structure: Easily finds elements by tags, IDs,
classes, etc.

• Extracts data: Retrieves text, attributes, and other
information.

• Handles malformed HTML: Robustly handles errors and
inconsistencies.

27

Introducing Requests

• The Requests library simplifies the process of
sending HTTP requests in Python.

• It allows users to make GET and POST requests,
handle response data, and manage sessions
seamlessly.

• This library eliminates the complexities of standard
Python modules, streamlining the fetching of web
content.

28

Setting Up the Environment

• Install Necessary Libraries:

pip install requests beautifulsoup4

• Import Libraries:

import requests

from bs4 import BeautifulSoup

29

Fetching the Webpage

Use requests.get():

url = "https://www.example.com"

response = requests.get(url)

Check for Success:

if response.status_code == 200:

 print("Page fetched successfully")

else:

 print("Error fetching page")

30

Replace "https://www.example.com" with
the actual URL you want to scrape.

Creating a Beautiful Soup Object

• Parse the HTML:
soup = BeautifulSoup(response.content, "html.parser")

• Explanation:

• response.content: The HTML content of the fetched page.

• "html.parser": The parser to use for parsing the HTML.

31

Navigating the HTML Structure

• Inspect Element: Use your browser's developer
tools to examine the HTML structure.

• Find Elements:

• By ID: soup.find(id="element_id")

• By Class: soup.find_all(class_="element_class")

• By Tag: soup.find_all("tag_name"))

32
Adjust the selectors (e.g., id, class) based on the target elements on the webpage.

Extracting Data

• Access Text: element.text

• Access Attributes: element["attribute_name"]

• Example:
title = soup.find("h1").text

price = soup.find("span", class_="price").text

print("Title:", title)

print("Price:", price)

33

Putting it All Together

import requests
from bs4 import BeautifulSoup

url = "https://www.example.com/product"
response = requests.get(url)

if response.status_code == 200:
 soup = BeautifulSoup(response.content, "html.parser")

 title = soup.find("h1").text
 price = soup.find("span", class_="price").text

 print("Title:", title)
 print("Price:", price)
else:
 print("Error fetching page")

34

What to Consider When Scraping

• Respect website guidelines for scraping.

• Rate Limiting: Avoid overwhelming servers with
excessive requests.

• Legal and Ethical Considerations: Ensure your
scraping practices comply with laws and
regulations.

35

Alternatives to Web Scraping: APIs (1)

• Some websites provide Application Programming
Interfaces (APIs) as a stable method for data
access.

• APIs are designed for programmatic interactions,
enabling users to request data in structured
formats like JSON, minimizing parsing
complexities associated with HTML.

36

Alternatives to Web Scraping: APIs (2)

• The front-end presentation of a site might change
often, but such a change in the website’s design
doesn’t affect its API structure.

• The structure of an API is usually more
permanent, which means it’s a more reliable
source of the site’s data.

37

Conclusion

• Web scraping is a versatile tool for automating data
extraction from websites.

• There are many tools available for web scraping, each
with different features (Scrapy, Selenium,
Puppeteer,…)

• Beautiful Soup is a powerful library for web scraping.

• It simplifies the process of navigating and extracting
data.

• Be mindful of ethical considerations and website
guidelines.

• Encouragement: Continue exploring web scraping and
experiment with different techniques.

38

	Slide 1: Web scraping tools
	Slide 2: Outline
	Slide 3: Introduction (1)
	Slide 4: Introduction (2)
	Slide 5: Introduction (3)
	Slide 6: Introduction (4)
	Slide 7: Reasons for Web Scraping
	Slide 8: Challenges of Web Scraping
	Slide 9: Scraping tools (1)
	Slide 10: Screendump Imacros(2)
	Slide 11: iMacros: generated code
	Slide 12: Scraping tools (2)
	Slide 13: Scrapy example
	Slide 14: Scraping tools (3)
	Slide 15: Screendump ImportIO
	Slide 16: Screendump ImportIO
	Slide 17: Screendump ImportIO
	Slide 18: Scraping tools (4): Selenium
	Slide 19: Scraping tools (4): Selenium
	Slide 20: Scraping tools (5)
	Slide 21: Some scraping knowledge (1)
	Slide 22: Some scraping knowledge (2)
	Slide 23: Some scraping knowledge (3)
	Slide 24: Beautiful Soup: Web Scraping with Python
	Slide 25: Why Use Python for Web Scraping?
	Slide 26: Overview of Python Libraries
	Slide 27: Introducing Beautiful Soup
	Slide 28: Introducing Requests
	Slide 29: Setting Up the Environment
	Slide 30: Fetching the Webpage
	Slide 31: Creating a Beautiful Soup Object
	Slide 32: Navigating the HTML Structure
	Slide 33: Extracting Data
	Slide 34: Putting it All Together
	Slide 35: What to Consider When Scraping
	Slide 36: Alternatives to Web Scraping: APIs (1)
	Slide 37: Alternatives to Web Scraping: APIs (2)
	Slide 38: Conclusion

