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What is NumPy?

e NumPy Overview
¢ A fundamental Python library for numerical computing.
¢ Provides support for large, multi-dimensional arrays and matrices. numpy
¢ Includes a collection of mathematical functions to operate on these arrays. R -

a = np.array([1,
¢ Why NumPy? print(a)

e Performance: Implemented in C, providing fast execution.
Array [12 3 4 5]

¢ Functionality: Includes functions for linear algebra, Fourier transform, and random
number generation. dtype=int64

¢ Integration: Forms the basis of most Python-based scientific computing solutions.
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Why Use NumPy?

e Advantages of NumPy

e Optimized for numerical operations with N-dimensional array support.

numpy

e Essential for scientific computing with Python.

a = np.array([1,

e Facilitates complex mathematical functions and operations. SFinE(a)

o Powerful Computing Capabilities

Array [12 3 4 5]
o Efficient operations with arrays and matrices.

o 3 ; : dtype=int64
e Supports broadcasting and advanced indexing technigues.

e |Integrates C/C++ and Fortran code for high performance.
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How to Install NumPy?

¢ Installation Guide

e Using pip (Python's Package Installer):
e Ensure Python and pip are already installed on your system.
e Open your command prompt (Windows) or terminal (Mac/Linux).

¢ Type the following command and press Enter:

(3 Copy code

pip install numpy

e Using Anaconda:

¢ Anaconda is a popular Python distribution for data science and machine learning that
includes NumPy.

¢ |f Anaconda is installed, NumPy can be installed via the Anaconda Prompt:

() Copy code

conda install numpy
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How to Install NumPy?

Verifying Installation

e To ensure NumPy is installed correctly, run:

(P Copy code

numpy np
print(np.__version__)

This command will print the installed version of NumPy.
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Understanding Scalars with Numpy

e Linear Algebra Concept:

¢ Definition of Scalars: Scalars are single numerical values that can represent

quantities like length or temperature.

e Operations with Scalars: Common operations include addition, subtraction,

multiplication, and division.
¢ NumPy Implementation:

o Creating Scalar Variables:
Using Scalars in NumPy:

(9 Copy code

e Scalars in NumPy behave similarly to numbers in

numpy np basic Python but are optimized for performance

= # % ic 3 < in NumPv . .
x = np.array(5) # x is a ) DL when used in array operations.

o Performing Arithmetic Operations with NumPy Scalars:  They automatically integrate with NumPy’s

universal functions for array-based computing.
(9 Copy code

X —
X %
X/
print(
print(
print(
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Understanding Scalars with Numpy

e 2.2 NumPy Array Basics

e Key Concepts:

e Python Lists vs. NumPy Arrays:

e Lists: Flexible, slow for large datasets.
e Arrays: Optimized for speed, designed for numerical operations.

e Advantages of NumPy Arrays: « Practical Application:

; ¢ Creating and Examining Arrays:
e Faster data handling. : w———

o : ’ python (P Copy code
e Built-in mathematical functions.

numpy np
np.array([1, 2, 3, 4, 5])

o Efficient memory usage.
np.array([[1, 2, 31, [4, 5, 611)

, arrl.shape, , arrl.dtype,
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Shape | Data Type | Dimension

The execution results for the NumPy array code are as follows:

(P Copy code

o Attributes of arrl (One-dimensional array):
numpy np e Shape: (5,)

o Data Type: int64

# Creating a one-dimensional array ¢ BinlbercEBinendions:d

arrl = np.array([ BE S B ¥ 1) e Attributes of arr2 (Two-dimensional array):
# Creating a two-dimensional array

e Shape: (2, 3)
arr2 = np.array([[1, 2, 3], [4, 5, 6]1])

e Data Type: int64

# Displaying attributes of arrl « Number.of Dimensions: 2

print("A [ f arrl:")

print( :", arrl.shape) # Outputs the shape of the array (["Attributes of arrl:',
print("Data :", arrl.dtype) # Outputs the data type of array elements 'Shape: (5,)',

print( [ ., arrl.ndim) # Outputs the number of dimensions

‘Data Type: int64',
# Displaying attributes of arr2 ‘Number of Dimensions:
print( It 1) [*\nAttributes of arr2:

print("sl :", arr2.shape) # Outputs the shape of the array *Shape: (2, 3)',

-1 - . ¥ Outnute hea a2+ 5 Fvne f 1 e arra A S 5
print( ) :", arr2.dtype) # Outputs the data type of the array element 'Data Type: int64',

rint ("I ns: arr2.ndim # Outputs the number of dimensions . :
prinl : SR CLTH ) ' '"Number of Dimensions:
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1D Vectors (Arrays)

« Linear Algebra Concept:

» Definition of Vectors: Vectors are denoted as v = [vy, va, . . . , U, in mathematics,

2D Vegctor Representation with Projections and Coordinates 3D Vector Representation with Projections and Coordinates
representing an ordered collection of n elements, each element a coordinate in n-

dimensional space.

4 e ————— e ————— »
« Data Science Application: /
N

» Feature Vectors: In data science, vectors are used as feature vectors, where each
element v; represents a distinct attribute or feature of a data point, crucial for

Y-axis
N

models in Al and machine learning.
* NumPy Implementation:

» Representing Vectors Using 1D Arrays:

python (3 Copy code 0 1 2

C tializing a
feature_vector = np.array([5, 3,

# Define a 2D and a 3D vector
vector_2d = np.array([3, 4])
vector_3d = np.array([(3, 4, 5])

« Initializing Vectors:
python Copy code
(Y
2ro and one vec

zero_vector = np.zeros(4)
one_vector = np.ones(4)
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NumPy Implementation:

« Performing Vector Addition and Subtraction:

Vector Operations

numpy np

v = np.array([2, 4, 6])
w = np.array([1, 0, 1])

3.2 Vector Operations
addition = v + w # V

subtraction = v - w

» Operations in Linear Algebra:

* Scalar Multiplication:

» Addition and Subtraction of Vectors: -
python Copy code
e V = [2, 4, 6] scalar =
scaled_vector = v x scalar # Scalar multiplication

Vector Operations: Addition, Subtraction, and Scalar Multiplication

. w=[1,0,1]
« Addition:v+w=[2+1,4+4+0,6+ 1] = [3,4,7]

v + w (2:40, 5.20, 3.0

 Subtraction:v—-w =[2-1,4—-0,6 —1] = [1,4, 5]

v-(2.40, 4.10,1:50)

)
V- w (2:40, 3.00,/0.00}

» Scalar Multiplication:

e Scalarec=3
[ C-V=3-[2,4,6]=[6,12:18] -
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3D Vector Operations Sum | Subtraction

Vector Operations: Addition, Subtraction, and Scalar Multiplication

NumPy Implementation:

Performing Vector Addition and Subtraction:

(3 Copy code

6

numpy np 5

v = np.array([2, 4, 6]) v + W (2:40, 5.20, 3.00 4
w = np.array([1, o, 1]) ’
addition = v + w # Vector addition Vv-(2.40, 4.10, 1-50) i
0

subtraction = v - w # Vector

subtraction
v - w (2:40, 3.00, 0.00}

» Scalar Multiplication:
python (3 Copy code

scalar =

scaled_vector = v % scalar # Scalar multiplication
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2D Vector Operations - Sum | Subtraction

1 impo rt n Umpy as np Vector Operatiqns: Addition, Subtractign, and Scalar MuItipIication (2D)
2 import matplotlib.pyplot as plt

3 8 4 | |__v+w(2.50,8.00)

4 # Define the 2D vectors v and w

5 v = np.array([2.5, 4.5]) gl

6 w = np.array([0.0, 3.5]) o Sl Vi

; .

8 # Vector operations 21

9 addition = v + w et B

10 subtraction = v - w .

11 ¢ =-0.75 L |

12 scalar_multiplication = Cc * w i |

13 2 0 2 . 4 6 8 10
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Application of Vectors in Al

Image shape: (275, 183, 3)

Vectors in Computer Vision: Image array:
[[[255 255 255]
» Image Representation: {ggg §§§ ggg%
* Images in computer vision are represented as vectors or matrices of pixel (255 255 255]
| [255 255 255]
values. (255 255 255]]
* For example, a grayscale image can be represented as a 2D array where each [[255 255 255]
; ; : [255 255 255]
element corresponds to the intensity of a pixel. (255 255 255]
» Math Example: A 2 x 2 grayscale image might be represented in NumPy as: [255 255 255]
[255 255 255]
D\,’(hOH @ COD‘/ code [255 255 255]]

[[255 255 255]
[255 255 255]
num n

124 P [255 255 255]

image = np.array([[?,

[255 255 255]
[255 255 255]

« This simple array shows how images are treated as numerical data, which Al [255 255 255]]
models can process to recognize patterns or features.
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Application of Vectors in NLP

Vectors in Natural Language Processing (NLP):

1 import numpy as np
1 . 2
. Word Representat|on 3 # Let's assume we have 3 words and we're embedding them in a 5-dimensional vecto
4 word_to_embedding = {
. . . . " 5 ‘apple': np.array([0.1, 0.3, 0.5, 0.7, 0.9]),
* Words in NLP are represented as vectors in a high-dimensional space (word 6 ‘banana‘: np.array([0.2, 0.4, 0.6, 0.8, 1.01),
7 ‘cherry': np.array([0.3, 0.5, 0.7, 0.9, 1.1])
o 8 }
embeddings). o

10 # Let's select a word to embed
. . . o ; 11 word = 'apple’

* These vectors capture semantic meanings where words with similar meanings 12 _

13 # Get the word's embedding vector
. 14 embedding_vector = word_to_embedding [word]
are closer in the vector space. 15
16 # Display the embedding vector
17 print(f"Embedding vector for the word '{word}':")

. H "y 1] - ; 2
* Math Example: Representing the word "king" as a vector might be abstractly 18 print(cabeddion vector]
. . . 20 # You can perform operations on these vectors, such as calculating similarity
V|SuaI|ZEd as: 21 # For example, calculating the dot product between "apple" and "banana"
22 similarity = np.dot(word_to_embedding['apple'], word_to_embedding|['banana'])
23
python f‘y COD"/ code 5451 print(f"\nSimilarity (dot product) between 'apple' and 'banana': {similarity}")

Embedding vector for the word ‘'apple':
: [0.1 0.3 0.5 0.7 0.9]
king = np.array( [

Similarity (dot product) between 'apple' and 'banana': 1.9

» This vector could be part of a model trained to perform operations like finding
synonyms or analyzing text sentiment.
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Application of Vectors in NLP

Embedding vector for the word ‘'apple':
[-1.2599487 -0.87038326 -1.0834986 ©.5798379  0.03857595 -0.02588724
0.9775548 0.31093895 ©.19412561 -0.8062178 0.43808204 -1.8498268

-0.30574286 0.5693637  0.42844394 0.69174224 -0.7197368 -1.2614795
0.83457553 0.14667332 0.12171662 0.48029226 0.50147873 —0.4299112
1 i " 0.5533447  0.8749714  0.71914 0.5731143 -0.5064311  0.38493997
mpol~ spacy -0.31778833 0.18084693 0.5162936 -0.00233826 0.1870515 -1.3773322
2 import numpy as np 1.009095 -0.10771251 1.6994228 0.78603184 -0.8166558 0.57896584
3 -0.5232718  0.7045958 —0.46308953 -0.37629813 -0.38788998 0.1730735
. : -0.05550597 -0.17245518 0.62919456 0.87473 0.60047954 -0.27686393
4 # Load the small E"gllSh model LR SpACY 0.8524152 -0.28676936 ©0.9972549 -0.71060055 0.11830124 -0.37214422
5 nlp = spacy.load("en_core_web_sm") -1.3039289 -0.02281845 0.4063236 -0.43118405 0.9401908 -0.02761412
6 -0.39026427 -0.29733896 0.78710043 —0.34422576 ©0.11906591 0.8003473
7 S ; 1.4978364 -0.38792044 -0.5264353 -0.38889915 -0.28553864 -0.22295064
% /CHOGSE A WOES: AT (CONVEEE J1x. L0:A VECLQH HS1Ap, SpAcy 0.8420893 -0.79365766 -0.0956156 —0.96640915 ~1.1665895 -1.1019065
8 word = "apple -0.602306  0.765056  ©.3859367 -0.31349194 -1.237845  0.11333084
9 doc = nlp(word) -1.6053262 ©.14791119 0.6127024 1.0456864  0.8747115  0.6120273 ]
10 embedding_vector = doc.vector Shape of the embedding vector for the word 'apple' is (96,):
11
12 # Convert the spaCy vector to a NumPy array
13  embedding_vector = np.array(embedding_vector) Explanation:
14
15 # Print the embedding vector 1. We use the en_core_web_sm model from spaCy, which is a small pre-trained model for
16 print(f"Embedding vector for the word '{word}':") English.
17 print(embedding_vector) 2. Foraword like apple, we get the word's vector (embedding) using spaCy's doc.vector .
18
19 #Print the Shape of the vector 3. We print the embedding vector and demonstrate how to compute the similarity (in this case,
20 print(f"Shape of the embedding vector for the word '{word}' is {embedding_vector.shape}:") using the dot product) between two words ( apple and banana ).
21
Notes:

* The en_core_web_sm model uses relatively simple embeddings, but larger models (like
en_core_web_md or en_core_web_lg ) provide richer embeddings with more detailed word
representations.

« |If you want to use more advanced embeddings, you can download larger models or use pre-
trained models like GloVe or Word2Vec.
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Dot Product

* Linear Algebra Concept:

* Dot Product: The dot product of two vectors, feature vector x and weight vector w,
: n y : : NumPy Implementation:
is calculated as x - w = Zi:l z;w;. This operation can be seen as a linear

. . * Computing Dot Product:
transformation of the features by the weights.

(9 Copy code

* Properties:

numpy np
» Commutative: Xx-w =w-X x = np.array([2, 4, 6])

w = np.array([1, 0, 1])
» Distributive over addition dot_product = np.dot(x, w)

dot_product_operator = x @ w

» Scalar multiplication compatibility
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Dot Product

» Definition:

* The dot product of two vectors x and y is a scalar that represents the sum of the

products of their corresponding components.

Compact Math Form:
¢ Xy= E?:l TiYi
» Expanded Math Form:
» Given vectors x = [y, &3, 3] and y = [y1, y2, ¥3), the dot product can be expressed

as:

Y1
x‘)’:[ml z 933]' Y| =T1-Y1+T2-Y2+T3-Y3
Ys

* Numerical Example:
 Forvectorsx = [2,3,4]andy = [1,0, —1]:
x-y=2-1+3-0+4-(-1)=2+0—-4=—2

¢ Purpose:

* The dot product quantifies how much one vector extends in the direction of another, thus

providing a measure of alignment between the vectors. It is widely used to measure

vector similarity in various fields of mathematics and physics.
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python (9 Copy code

numpy np

# Define the vectors

x = np.array([2, 3, 4])

y = np.array([1, 0, -1])

# Compute the dot product using NumPy

dot_product = np.dot(x, y)

# Print the results

print(

print( , X)

print( , ¥)

print( , dot_product)

Vectors x and y:

x = [2 3 4]

y=[1 0 -1]
Dot Product (x - y)

]
|
N
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Why do We need Dot Product?

2.0
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Why do We need Dot Product?
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Why do We need Dot Product?
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Why do We need Dot Product?

Equal Vectors

2.0 Perpendicular Vectors
2.0 ‘ ‘ |
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Dot Product: 2 1.5 4 L L 1 | ]
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Why do We need Dot Product?

i Dot product (similarity) between 'apple' and 'banana': 911.4376831054688
i Dot product (similarity) between 'apple' and 'lion': 161.2523651123047
' Embedding Shape: (300,)

1 import spacy
2 import numpy as np

4 # Load the medium English model in spaCy for better embeddidgs
5 nlp = spacy.load("en_core_web_md")
6

7  # Define the words
8 words = ["apple", "banana", "lion"]
9

10 # Get the embeddings for the words
11  embeddings = {word: nlp(word).vector for word in words}

13 # Display the embedding vectors
14 for word, vector in embeddings.items():

15 print(f"Embedding vector for '{word}':")
16 print(vector, "\n")
17

18 # Calculate the dot product between 'apple' and 'banana', and 'apple' and 'lion'
19 similarity_apple_banana = np.dot(embeddings|['apple'], embeddings|'banana'l)
20 similarity_apple_lion = np.dot(embeddings['apple'], embeddings('lion'])

22 # Print the results
23 print(f"Dot product (similarity) between 'apple' and 'banana': {similarity_apple_banana}")
24 print(f"Dot product (similarity) between 'apple' and 'lion': {similarity_apple_lion}")
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Why do We need Dot Product?

Dot product (similarity) between 'apple' and 'banana': 39.10390090942383 i
Dot product (similarity) between 'apple' and 'lion': 35.11163330078125 l
Embedding Shape: (96,) i

____________________________________________________________________________________

import spacy
import numpy as np

1

2

3

4 | # Load the medium English model in spaCy for better embeddings
5 | nlp = spacy.load("en_core_web_sm")
6 1
7

8

9

# Define the words
words = ["apple", "banana", "lion"]

10 # Get the embeddings for the words
11  embeddings = {word: nlp(word).vector for word in words}

13 # Display the embedding vectors
14 for word, vector in embeddings.items():

15 print(f"Embedding vector for '{word}':")
16 print(vector, "\n")
17

18 # Calculate the dot product between 'apple' and 'banana', and 'apple' and 'lion'

19 similarity_apple_banana = np.dot(embeddings('apple'], embeddings!('banana'])

20 similarity_apple_lion = np.dot(embeddings['apple'], embeddings['lion'])

21

22 # Print the results

23 print(f"Dot product (similarity) between 'apple' and 'banana': {similarity_apple_banana}")
24 print(f"Dot product (similarity) between 'apple' and 'lion': {similarity_apple_lion}")

25 print(f"Embedding Shape: {embeddings|['apple'].shapel}")
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Vector Normalization (L2)

e Definition:

» Vector normalization is the process of scaling a vector to have a unit length, i.e., a
magnitude of 1. This is accomplished by dividing each component of the vector by its
norm (magnitude).

e Purpose:

* Compact Math Form:

« The normalized vector ¥ of a vector v is given by: % Similatity of Twa Vactors:

» Normalization is crucial for methods like cosine similarity, where the similarity

~

between two vectors is measured based on the angle between them, rather than

”V || their magnitude. By normalizing vectors, we ensure that the similarity measure

reflects directional similarity, independent of vector length.

 Expanded Math Form. |

1
|
v :
1
1
1

« Givenavector v = (v}, v, ..., ), its normalized form ¥ is:

U1 U2 Un
~— ’ "..’
VUi +vi .. 02 i tvi ...+ 02 VUi Ui+ + 02

~
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Vector Normalization - Example

+ Expanded Math Form:

» For vector v = [3,4]:

Iv]| =32 +42=5

<>

_ |3 4
|55

* Numerical Example:
 Normalize v = [3, 4].
« Norm ||v|| = 5.
» Normalized Vector ¥ = [0.6,0.8].
* NumPy Implementation:

L python

numpy np
v = np.array([3, 4])

norm_v = np.linalg.norm(v)
normalized_v = v / norm_v

'y V)
, horm_v)

print(
print(

print( "', normalized_v)
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Original vs Normalized Vector

3.0

2.5 A

2.0 A

1.5 7

1.0 1

0.5 A

r 4

BN Original Vector [3, 4]
HE Normalized Vector [0.6, 0.8]

Origina

/

Normaliz?/

/

/

« Original Vector: (3, 4] - Shown in red
* Norm of the Vector: 5.0

» Normalized Vector: [0.6, 0.8] - Shown in blue

0.0
0.0

0.5

1.0 1.5 2.0 2.5 3.0 3.5
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L1-Normalization

Original vs Normalized Vector

3.0
L1 Norm (Manhattan Distance): B Original Vector [3, 2]
H Normalized Vector [0.6, 0.4]
» Compact Form: 2.5 : [ . .
n
%[l = E :|"3x| 2.0
i=1
» Expanded Form: e
» Forvector x = (21,2, ...,Zy):
1.0 1 | | Origin
%[y = |1]| + |z2| + ... + |2
w P . . . Normalize
urpose: Measures the sum of the absolute values of the components. It is useful in o 1
scenarios where differences of any size are equally important.
0.0 | T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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L2-Normalization

Original vs Normalized Vector

3.0
I Original Vector [0.83, 0.55]
L2 Norm (Euclidean Distance): B Normalized Vector [0.6, 0.4]
2.5 = 1 ' | | 4 | | !
¢ Compact Form:
2.0 4
x|z =
1.5 1
* Expanded Form:
» Forvector x = (&1, &3, ..., Zy): 1.0 1 1 -Origin
Normalize
— 2 2
* Purpose: Measures the straight-line distance from the origin to the point in n-
dimensional space, which is useful for determining actual distances between points. 0.0 - - - - - - -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
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Normalization in Computer Vision

1 import numpy as np Original Grayscale Image Normalized Grayscale Image

2 import matplotlib.pyplot as plt 0

3 import requests

4 from PIL import Image

5 from io import BytesIO

6 S5

7 # Load the image from a URL

8 image_url = "https://www.riotu-lab.org/cs313/cat.jpg"

9 response = requests.get(image_url)

10 img = Image.open(BytesIO(response.content))

11 100 1

12 # Convert the image to a numpy array

13 image = np.array(img)

14

15 # Convert the image to grayscale for simplicity

16 if image.ndim == 3: 1501

17 grayscale_image = np.dot(image(..., :3], [0.2989, 0.5870, 0.1140])

18 else:

19 grayscale_image = image # if the image is already in grayscale

L 200 A

21 # Flatten the grayscale image to simulate a vector of pixel intensities

22 image_vector = grayscale_image.flatten()

23

24 # Compute the L2 norm of the image vector

25 12_norm = np.linalg.norm(image_vector) 250 A

26

27 # Normalize the image vector : . .

28 normalized_image_vector = image_vector / 12_norm

29 o 1 print(normalized_image_vector)

30 # Reshape normalized image back to the original grayscale image dimensions

31 normalized_image = normalized_image_vector.reshape(grayscale_image.shape) ':Z' array([0.00524478, 0.00524478, 0.00524478, ..., 0.00524478, 0.00524478,

e s 0.00524478])

o NLLIWOIIE SEID WL AN thiwatieed AN [0.00524478 0.00524478 0.00524478 ... 0.00524478 0.00524478 0.00524478]
plt.figure(figsize=(12, 6))

35

36 # Plot original image . .

37 plt.subplot(l, 2, 1) [43] 1 print(image_vector)

38 plt.imshow(grayscale_image, cmap='gray')

39 plt.title("Original Grayscale Image") 5+ [254.9745 254.9745 254.9745 ... 254.9745 254.9745 254.9745]

—
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Normalization in NLP

1 import spacy

2 import numpy as np

3

4 # Load the medium English model in spaCy for word embeddings
5 nlp = spacy.load("en_core_web_md")

6

7  # Define the words

8 words = ["apple", "banana", "lion"]

9

10 # Get the embeddings for the words
11 embeddings = {word: nlp(word).vector for word in words}

13 # Display the embedding vectors and calculate their norms (L2 norm)
14 for word, vector in embeddings.items():

15 # Compute the L2 norm (Euclidean norm) of the word embedding
16 norm = np.linalg.norm(vector)

17 print(f"Vector norm (L2) for '{word}': {norm}")

18

Vector norm (L2) for 'apple': 43.36647415161133
Vector norm (L2) for 'banana': 31.6203556060791
Vector norm (L2) for 'lion': 55.14573287963867
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Vector norm (L2) for 'apple': 43.36647415161133
Vector norm (L2) for 'banana': 31.6203556060791
Vector norm (L2) for 'lion': 55.14573287963867
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Normalization in NLP

1 import spacy 1.0
2 import numpy as np Original L2 norm for 'apple': 43.36647415161133
3 Normalized L2 norm for 'apple': 1.0
- : : ; Normalized vector for 'apple':
4 # Load the medium English model in spaCy for word embeddings [-0.02325298 -0.0468288 -0.0148006 0.06209405 0.00732617 -0.06148067
5 nlp = spacy.load("en_core_web_md") -0.08617717 0.12616658 -0.11933412 0.01198114 0.12657934 —0.04823542
= e -0.05749142 0.05338686 ©0.00906207 —0.05597181 0.07896883 -0.06115323
6 0.05843454 —-0.11089443 -0.04526769 ©0.11309428 —0.05865822 -0.03650285
7 # Define the words -0.08719639 -0.05750064 —0.05594414 ©.08798733 0.01064832 0.02833064
8 ds = [ le", "b " "lion" -0.00483484 -0.03240522 -0.0555429 -0.05133689 0.0328249 -0.04312087
words = ["apple", anana’, ion"] 0.05970511 0.07801418 0.06552527 -0.03466042 0.02447513 0.03105394
9 0.01761545 0.02147581 0.04973427 ©0.05345143 0.03137677 -0.00476566
- 0.06601644 ©0.01765949 0.0379579 ©0.01013041 0.0476451 -0.05680425
10 # Get the embeddings for the words| : -0.06277199 0.0271869  0.00095576 0.05129308 0.04127843 -0.01273749
11 embeddings = {word: nlp(word).vector for word in words} 0.06190266 ©0.08541851 -0.01359553 —0.00046061 —0.03268423 -0.0099736
12 -0.04702942 -0.12144865 ©0.01810177 0.00215099 -0.01777687 0.04564355
) ) -0.02931758 -0.01038959 ©0.05871356 0.0341093 -0.10125333 -0.06029081
13 # Function to normalize a vector 0.05877351 -0.03483567 0.00474906 ©0.0393207 -0.00729227 -0.01800561
14 def normalize vector(vector): 0.02562809 ©0.10181367 0.12546559 ©0.10126255 —0.06089958 0.02357812
S ( ) -0.00602862 0.07747921 ©0.06238921 —0.04965356 0.0086131 -0.00793977
15 norm = np.linalg.norm(vector) # Calculate the L2 norm 0.11659697 -0.06637616 -0.0374921 -0.07797268 —0.00067771 —0.03695481
16 if norm == @: # To prevent division by zero
17 return vector
18 return vector / norm
19
20 # Normalize the embeddings and show the result
21 for word, vector in embeddings.items():
22 normalized_vector = normalize_vector(vector)
23
24 # Show original and normalized vector norms
25 print(f"Original L2 norm for '{word}': {np.linalg.norm(vector)}")
26 print(f"Normalized L2 norm for '{word}': {np.linalg.norm(normalized_vector)}")
27 print(f"Normalized vector for '{word}':\n{normalized_vector}\n")
28
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Cosine Similarity of Two Vectors

- Definition: Cosine Similarity: 0.96
* Cosine similarity is a measure of similarity between two non-zero vectors within an inner 3 BN Vector a [3, 4]
product space that measures the cosine of the angle between them. B \ector b [4' 3]
* Math Equation:
« Compact Form: 47
x .
Cosine Similarity(x,y) = it il
Ix[llly
* Expanded Form:
» Givenvectors x = (@1, &3,...,Z,] andy = [y1,y2,. .., Un):

1Y + T2y + ...+ TpYn
VEEtal+. .+ R+ 4. 2

Cosine Similarity =

¢ Purpose:
* Similarity Measurement:
» Cosine similarity is widely used in various applications such as text analysis, where it

helps in identifying the similarity between documents. It is especially useful in high-
dimensional positive spaces like text data in TF-IDF representation.

* In machine learning, it helps in clustering and classification by measuring how similar 0 1 2 3 4 5
the data objects are, irrespective of their magnitude.
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Cosine Similarity of Two Vectors

(>

O OO B WN =

10
11
12
13
14
15
16
17
18
19

import numpy as np Numerical Example:

impo rt matplot 1ib. pyp lot as plt Consider two vectors in a 2D space:
« a=[3,4]

# Define the vectors . b=[4,3

a = np.array([3, 4])

b

np.array([4, 3])

# Calculate the dot product
dot_product = np.dot(a, b)

# Calculate the norms of the vectors
norm_a = np.linalg.norm(a)
norm_b = np.linalg.norm(b)

Xy

Cosine Similarity(x,y) = lix—HH;I_I

# Calculate the cosine similarity
cosine_similarity = dot_product / (norm_a * norm_b)

print("Cosine Similarity:", cosine_similarity)
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Original Vectors

I Vector a [3, 4]
N Vector b [4, 3]

1.00

0.75 1

0.50

0.25 A

0.00

-0

-0

-0

—-1.00

Normalized Vectors
Cosine Similarity: 0.96

N Normalized a
Hmm Normalized b

.25 1

.50 1

.75 1

"21.00 —0.75 —0.50 —0.25 0.00 025 050 075 1.00
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Cosine Similarity of Two Vectors

1 import spacy
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns « e
: P Cosine Similarity Between Words
6 # Load the medium English model in spaCy for word embeddings o
7 nlp = spacy.load("en_core_web_1g") o
8 g
9 # Define the words
10 words = ["apple", "banana", "fruit", "lion", "tiger", "leopard"] g
11 &
12 § # Get the embeddings for the words s
13 | embeddings = {word: nlp(word).vector for word in words} 2
14
15 # Function to normalize a vector "5" - 0.6
16 def normalize_vector(vector): i :
17 norm = np.linalg.norm(vector) # Calculate the L2 norm
18 if norm == @: # To prevent division by zero
19 return vector s
20 return vector / norm =
- 0.4
21
22 § # Normalize the embeddings -
23 | normalized_embeddings = {word: normalize_vector(vector) for word, vector in embeddings.items()} 8,
24 E=]
25 # Calculate pairwise cosine similarities
26 cosine_similarities = np.zeros((len(words), len(words))) e
27 4 0.57
28 for i, wordl in enumerate(words): §
29 ; i » |
30 cosine_similarities[i, j] = np.dot(normalized_embeddings[wordl], normalized_embeddings [word2])| apple banana fruit lion tiger leopard
31
32 # Plotting the cosine similarities using a heatmap
33 plt.figure(figsize=(6, 5))
34 sns.heatmap(cosine_similarities, annot=True, cmap='coolwarm', xticklabels=words, yticklabels=words)
35 plt.title('Cosine Similarity Between Words')
36  plt.show()
37
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The Impact of Normalization

import spacy

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns Cosine Similarity Between Words

| 3000

# Load the medium English model in spaCy for word embeddings

Hipi= spacy. Toad('en core weh- Tg) -1.9e+03 9.1e+02 1.5e+03 fRISRPI P10 P T

Lo ~NOOULE WNRE
apple

# Define the words 2500

©
= " " " " " 3 " " : " " 1 " " " C | 2 .
ig words ["apple", "banana", "fruit", "lion", "tiger", "leopard"] 5 916402 1e+03 1.1e+03[PITR P IPRIST RNt
12§ # Get the embeddings for the words 38
13| embeddings = {word: nlp(word).vector for word in words} - 2000
14 . . ERSIITNE BRI T k2. 7€ +03 3.1e+02 3.4e+02 1.4e+02
15 # Function to normalize a vector =
16 def normalize_vector(vector):
17 norm = np.linalg.norm(vector) # Calculate the L2 norm - 1500
18 if norm == 0: # To prevent division by zero R 1.6e+02 2e+02 3.1e+02 3e+03 pETRRIEICR:-Ex 0]
19 return vector =
20 return vector / norm
21 = - 1000
22 # Normalize the embeddings O PIER PRI SRR ] 1.5e+03 1.4e+03 9e+02
23  normalized_embeddings = {word: normalize_vector(vector) for word, vector in embeddings.items()} =
24
25 # Calculate pairwise cosine similarities g : A rem : 500
26 similarities = np.zeros((len(words), len(words))) a SN R VPR R L vPd 9.8e+02 9e+02 9.7e+02
27 2
28 for i, wordl in enumerate(words): : s e y
29 ; ; e apple banana fruit lion tiger leopard
30 similarities[i, j] = np.dot(embeddings(wordl], embeddings(word2])
31

32 # Plotting the cosine similarities using a heatmap

33 plt.figure(figsize=(6, 5))

34 sns.heatmap(similarities, annot=True, cmap='coolwarm', xticklabels=words, yticklabels=words)
35 plt.title('Cosine Similarity Between Words')

36  plt.show()
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4.1 Understanding Matrices

e Compact Form:

 Expanded Form:
« For a matrix A with general elements:

« Linear Algebra Concept: A [1 2]

3 4
¢ Definition of Matrices:

« Matrices are two-dimensional arrays of numbers, denoted as A with elements NumPy Implementation:

. o 3 g 8 « Creating Matrices with 2D Arrays:
a;; where ¢ and 7 are row and column indices, respectively.

python (3 Copy code

» Applications in Transformations: e

A = np.array([[1, 2], [3, 411)

» Matrices can represent linear transformations in space, such as rotations,
« Exploring Matrix Attributes:

scaling, and translations.

« Shape: Determines the dimensions of the matrix.

« Dtype: Indicates the data type of matrix elements.
python (9 Copy code

, A.shape)
, A.dtype)
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4.2 Matrix Operations

e Matrix Addition and Subtraction:

e Addition or subtraction of two matrices of the same dimension results in a matrix

where each element is the sum or difference of corresponding elements.

« Compact Form:

a1l + b1
as1 + ba;

aiz + big

A+B=
a2 + b

« Scalar Multiplication:

» Multiplying a matrix by a scalar multiplies each element of the matrix by the
scalar.

» Compact Form:

cA = [c-au

C- Qa2
C-as C - as

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Performing Matrix Operations (+, -, *):

numpy as np

A = np.array([[1, 2],

(3,
[1,

11)

B = np.array([[2, ©], 11)

addition = A + B
subtraction = A - B
scalar_multiplication =
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4.2 Matrix Operations

1 import numpy as np MR AR

- | | [[1 2]

3 # Define the matrices (3 4]]

4 A = np.array([[1, 2], [3, 4]])

5 B = np.array([[2, @], [1, 3]1]) Matrix B:

6 [[2 o]

7 # Perform operations [131)

8 addition = A + B Addition of A and B:

9 subtraction = A - B [[3 2]
10 scalar_multiplication = 2 x A (4 711

11
12 # Print the results Subtraction of A from B:
13 print("Matrix A:\n", A) {[;1 1?}

14 print("\nMatrix B:\n", B)
15 print("\nAddition of A and B:\n", addition) Scalar Multiplication of A by 2:
16 print("\nSubtraction of A from B:\n", subtraction) [[2 4]
17 print("\nScalar Multiplication of A by 2:\n", scalar_multiplication) (6 8]]
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4.2 Matrix Operations

Matrix Multiplication:

» The product of two matrices is a new matrix where each element is computed as . given Matrices:

the dot product of rows of the first matrix with columns of the second. . Matrix A:
« Compact Form: 1 2]
3 4
AxB-~— a11b11 + a12ba1  a11biz + a1abae + Matrix B:
a21bi1 + azba  anbiz + axnbx o
1 3

« Matrix Multiplication:

Matrix Multiplication (np.matmul, @):  Matrix multiplication involves the dot product of rows of A with columns of B.

» Calculation:

python (3 Copy code Coaxp_|@-2+2:1) (1-0+2-3)]_[4 6
= =1(3-2+4-1) (3-0+4-3)| " |10 12

matrix_multiplication = np.matmul(A, B)

matrix_multiplication_alt = A @B
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Dot Product of Two Matrices

¢ Definition:

» The dot product of two matrices involves element-wise multiplication of two matrices of
the same size. The result is another matrix where each element is the product of

elements at corresponding positions in the original matrices.

(9 Copy code

« Math Equation:

numpy as np
e Compact Form:
€= A@B parray([[,], [3, 411)
np.array([[2, o], [1, 3]])
» Example: )
_ o2 2 0] C=A%B »
« For matrices A = [3 4] and B = [1 3]. |
print("
1+9 850 2 0] [N
— — — print("Dot
& S !3-1 4-3] [3 12]
* Purpose:

» This operation is often used in component-wise calculations required in applied

mathematics and certain types of statistical analyses.
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Dot Product of Two Matrices

1 import numpy as np

2

3 # Define the matrices

4 A = np.array([[1, 2], [3, 4]])

5 B = np.array([[2, @], [1, 3]])

6

7 # Compute the dot product of matrices A and B
8 dot_product = np.dot(A, B)

9

10 # Print the results

11 print("Matrix A:\n", A)

12 print("\nMatrix B:\n", B)

13 print("\nDot Product of A and B:\n", dot_product)
14
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Matrix A:
[[1 2]
(3 4]]

Matrix B:
[[2 0]
[1 3]]

Dot Product of A and B:
[[ 4 8]
[10 12]]
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Identity Matrix I5:

Identity Matrix

O =
o = O

(==
w

Il
]
-0 O
—_—

» Definition: An identity matrix I is a square matrix in which all the elements of the

principal diagonal are ones, and all other elements are zeros.

« Compact Form:

import numpy as np

# Create a 4x4 identity matrix

I = np.eye(4) P 4x4 identity matrix
print("\nIdentity Matrix\n", I)

O -

=]

..Oo
B WN R

Identity Matrix
[[1. 0. 0. 0.]
0. 1. 0. 0.]

+ Multiplicative Identity: A x T = A o On g g

» Properties:

]
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Diagonal Matrix

» Definition: A diagonal matrix D is a matrix in which the entries outside the main

diagonal are all zero.

e Compact Form: 1 # Create a diagonal matrix
2 D = np.diag([1, 2, 3, 4])
3 # Extract the diagonal elements from D
dy, 0 -+ O] 4 diagonal_elements = np.diag(D)
0 d ) 0 5 print("\nDiagonal Matrix\n", D)
D— E 6 print("\nDiagonal Elements\n", diagonal_elements)
0 0o --- d, Diagonal Matrix
) - [[10 0 0]
[0 2 0 0]
Diagonal Matrix Dy: [0 0 3 0]
1000 [0 0 0 4]]
D.— |0 200
710030 Diagonal Elements
0 00 4

[1 2 3 4]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024




A

Module 5: Systems of
Linear Equations

5.1 Solving Linear
Systems

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS




JUalw ol Aol | e Robotics &
£ &N\ Ro
e Ij é FOR @ Internet-of-Things

INTRODUCTION TO Al AND DATA SCIENCE

CHAPTER 4
Integratin with ;
Practical Foundations for Data Science

Determinant, Rank, Full Rank Matrix,
Inverse Matrix, Pseudo-Inverse Matrix, Solving Linear Systems

Prof. Anis Koubaad
SEP 2024

Do not distribute or share any slide without permission of the




A

Module 5:
Determinants and Rank

5.1 Determinants

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS




6.1 Determinants

¢ Problem Statement:

« Definition of Determinants: « Calculate the determinant of the matrix A and interpret the result.

e The determinant of a square matrix A is a scalar value that is computed from % PbeiiatixA:

Laplace expansion or by using elementary row operations. 5 Skt

e Mathematical Formula (Compact): e Using the compact formula: det(A) = 1(4) —2(3) =4 — 6 = —2

e Interpretation: Since det(A.) # 0, matrix A is invertible, and the transformation
it represents is area changing by a factor of 2 and reversing the orientation

e Fora2x2 matrix A = [a b] :
c d

1

1

1

1

1

I

| 1 2
the elements of the matrix. It is defined recursively and can be calculated via l A= [3 4]

I

1

1

1

I

l

1

: (indicated by the negative sign).

det(A) = ad — be oo

« Expanded Formula for a 3x3 Matrix:

I Significance of Determinants: |

a b c : ¢ Invertibility: A non-zero determinant indicates that the matrix is invertible. :

« Formatrix A = |d e f 5 : ¢ Volume and Orientation: The absolute value of the determinant represents the :
9 h i | volume scaling factor of the transformation defined by the matrix, and its sign |

det(A) — a(ez' . fh) . b(di . fg) g c(dh . eg) : indicates the orientation (positive or negative). :
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6.1 Determinants

o Definition of Determinants:

e The determinant of a square matrix A is a scalar value that is computed from
p p " " " ¢ Calculating Determinants:
the elements of the matrix. It is defined recursively and can be calculated via Y

Laplace expansion or by using elementary row operations ¢ The determinant can be computed using the np.linalg.det() functionin

Python's NumPy library.

e Mathematical Formula (Compact): « Python Code Example:
a b python (9 Copy code
e Fora2x2 matrix A = :
c d
numpy np
A = np.array([[1, 21, [3, 4]1)
det(A) =ad — bc det_A = np.linalg.det(A)

print(

e Expanded Formula for a 3x3 Matrix:

a b ¢
e Formatrix A= |d e f
g h 1

det(A) = a(ei — fh) — b(di — fg) + c(dh — eg)
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6.2 Rank of a Matrix

e Definition of Rank:

e The rank of a matrix A is the dimension of the vector space generated
(spanned) by its columns. This also corresponds to the maximum number of

linearly independent columns or rows in A.

e« Mathematical Description:
e Compact Form:

Rank(A) = dim(col(A))

e Expanded Form:

Rank(A) = number of pivot positions in A = dim(row(A))
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6.2 Rank of a Matrix

e Importance of Rank:

« System Solutions: Knowing the rank of A is crucial in determining the solvability of
the system Ax = b. If A is of full column rank, the system has a unique solution

when b is in the column space of A.

« Dimensionality and Data Insights: In data science, the rank of the feature matrix
affects model complexity and generalization. A lower rank might indicate redundancy
or correlations among features, suggesting potential for dimensionality reduction.
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6.2 Rank of a Matrix

NumPy Implementation:

. ¢ Determining Rank:
¢ Numerical Example: 9

e Use np.linalg.matrix_rank() to compute the rank of a matrix.
e Problem Statement:
e Python Code Example:

o Calculate the rank of matrix A and discuss its implications.

python (P Copy code

e Given Matrix A.:

numpy np
2 4 1 A =kn§.array](}[ '1 . 1:],. (8, e
rank_A = np.linalg.matrix_ran
A= 1|8 16 2 print( , rank_A)
0 0 1

e Solution:

import numpy as np
 Calculation reveals that the first two columns of A are linearly dependent A = np.array([[2, 4, 1],
(second column is twice the first), and the third column is linearly independent. {g' ;6' 1?} ;
’ ’

rank_A = np.linalg.matrix_rank(A)
print("Rank of Matrix A:", rank_A)

¢ Rank = 2 (since two columns are linearly independent).

« Implication: The system Ax = b will have solutions depending on the vector b

N o s WN e

. If b is in the span of the columns of A, there will be infinitely many solutions;

) . Rank of Matrix A: 2
otherwise, no solution.
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Inverse Matrices

¢ 5.2 Inverse Matrices

e Linear Algebra Concept:

« Definition of Inverse Matrices:

« An inverse matrix of a square matrix A is a matrix A !, which when multiplied

by A results in the identity matrix L.
e Equation:
AA =1
e Properties:
e A must be square and have a non-zero determinant.

o If A isnon-singular (i.e., det(A) # 0), then A ! exists.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Numerical Application:

e Example:

. (12 15,
e Given A = [3 4] andb = [11].

e Calculate A1 and solve for x:

¢ Confirm solution:

« Calculating Inverses:

e Use np.linalg.inv() to compute the inverse of a matrix.

+ Code:

(P Copy code

numpy np
A = np.array([[1, 2], [3, 411)
A_inv = np.linalg.inv(A)

« Using Inverses to Solve Systems:
« Solve Ax = b by computingx = A 'b.
« Code:

python

b = np.array([5, 11])
x = np.dot(A_inv, b)
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Full Rank Matrix

¢ Definition of Full Rank Matrix:

¢ A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,
thisis expressedas: il
. Example 1: A 2x2 matrix with full rank
Rank(A) = min(m,n) P
Consider the matrix:
e Properties:
¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,

which for m < n, means: o The matrix has 2 rows and 2 columns.

Rank(A) —m e To check if it's full rank, we need to see if the rows or columns are linearly independent.
. . L e The rank of this matrix is 2 (since both rows are linearly independent).
¢ Full Column Rank: A matrix has full column rank if every column is linearly

independent, applicable when n < m, signified by: Thus, matrix A is full rank, as its rank equals the smaller dimension (in this case, 2).

Rank(A) =n

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.
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Full Rank Matrix

¢ Definition of Full Rank Matrix:

« A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,

this is expressed as:

Example 2: A 2x2 matrix that is not full rank

5= %)

1
1
1
1
1
1
1
1
1
1
:
1
which for m < n, means: |« This matrix also has 2 rows and 2 columns.
1
1
1
1
1
1
1
1
1
1
1
1

Rank(A) = min(m,n)
Consider the matrix:
e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,

« But the second row is just 2 times the first row, meaning they are linearly dependent.
Rank(A) =m

o The rank of this matrix is 1 (since we have only one linearly independent row or column).

¢ Full Column Rank: A matrix has full column rank if every column is linearly

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
Thus, matrix B is not full rank because its rank (1) is less than the smaller dimension of the matrix :
1
1

independent, applicable when n < m, signified by:

Rank(A) =n

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.
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Full Rank Matrix

¢ Definition of Full Rank Matrix:

« A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,

this is expressed as: e
Example 3: A 3x2 matrix with full rank

1 2
C=13 4
5 6

e This matrix has 3 rows and 2 columns.

Rank(A) = min(m,n)

Consider the matrix:

e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,

Rank(A) -m « Since it's a rectangular matrix, we check if the rows are independent.
e The rank of this matrix is 2 (since the two columns are linearly independent).
¢ Full Column Rank: A matrix has full column rank if every column is linearly

independent, applicable whenn S m, signiﬁed by: Thus, matrix C is full rank because its rank (2) equals the smaller dimension, which is the number

1
1
1
1
1
1
1
1
1
1
:
1

which for m < n, means: I
1
1
1
1
1
1
1
1
|
1
! of columns (2).
1

Rank(A) =m = = = ememmmememe e

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.
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Full Rank Matrix

¢ Definition of Full Rank Matrix:

« A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,

this is expressed as:
Rank(A) = min(m,n)
e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,
which for m < n, means:

Rank(A) =m

¢ Full Column Rank: A matrix has full column rank if every column is linearly
independent, applicable when n < m, signified by:

Rank(A) =n

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.

1 2
D=4 5
7 8

e The rank of this matrix is 2 (since the rows are linearly dependent).

:_Example 4: A 3x3 matrix that is not full rank

Consider the matrix:

O W

« Specifically, the third row can be written as a linear combination of the first two rows.

Thus, matrix D is not full rank because its rank (2) is less than the smaller dimension (which is 3).
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Numerical Application:

Pseudo Inverse Matrices - o]

« Compute A* and use it to solve for x in Ax = b, providing the least

squares solution.

H * Solution:
e Linear Algebra Concept: N -1
x=A"b= [ 1 ]

» Definition of Pseudo Inverse Matrices: « This solution minimizes the squared error || Ax — bl|.

« The pseudo inverse, or Moore-Penrose inverse, of a matrix A is a matrix A ™
" . " . « Calculating Pseudo Inverses:
that generalizes the concept of an inverse to non-square matrices or matrices

that are not full rank. e Use np.linalg.pinv() tocompute the pseudo inverse of any matrix.

8 e Code:
e Properties:

python (3 Copy code

e A" exists for any matrix A, square or non-square.
numpy np

|t satisfies the conditions: AATA = Aand ATAAT = A" A =snp:array(l12,541, 511,
A_pinv = np.linalg.pinv(A)

o Difference with Inverse Matrix:
« Using Pseudo Inverses to Solve Systems:

. ; . st 66
A reQUIar INgise Only exists for Sguate,hon Smgu'ar matrices ¢ Solve systems, particularly over-determined or under-determined systems.

e The pseudo inverse can be computed for any matrix, providing a solution (often the o Code:
least squares solution) to Ax = b even when A does not have a conventional Sthon (9 Copy code

inverse.
b = np.array([1, 2, 3])

x = np.dot(A_pinv, b)
print( , X)
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Linear Regression for Sequence Labeling Using

Pseudo-Inverses

¢ Context and Objective:

e Goal: Apply linear regression to sequence labeling tasks, such as Named Entity
Recognition (NER), to predict the presence of named entities in text snippets using a

simple dataset.

« Challenge: Managing over-determined systems where there are more observations (data

points) than features (variables), which is common in text data analysis.
e Dataset and Preparation:

e Sample Dataset:

¢ A collection of text snippets and corresponding binary labels indicate whether each by s

snippet contains a named entity (1 for presence, 0 for absence). sklearn.feature_extraction.text

e Text Snippets:

snippets = [

e "John works at OpenAl." Labels: labels = np.array([1, 0, 1, 0])
e "Yesterday was very sunny." 1

e "She bought 300 shares of Tesla." e b= (1) # 1 and 3 contain named entities.

o "He loves to play soccer." 0

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

TfidfVectorizer

(9 Copy code
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Linear Regression for Sequence Labeling Using
Pseudo-Inverses

o Feature Extraction:

e Convert text snippets into a numerical format using TF-IDF, a method that transforms text

into a feature vector that represents the importance of words in a document relative to a

corpus.

¢ Mathematical Formulation:

vectorizer = TfidfVectorizer(max_features=5)

¢ Equation:
A = vectorizer.fit_transform(snippets).toarray()

A-x=b

e A_: Feature matrix derived from text snippets.

e X: Weight vector to be determined. Feature names: ['300' 'tesla' 'to' 'very' 'was']
Feature matrix (A):
e b: Known labels vector. [[0. 0. 0. 0. 0. ]
[0. 0. 0. 0.70710678 0.70710678]
[0.70710678 0.70710678 0. Q. 0. ]
(0. 0. 1% 0. 0. 1]
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Linear Regression for Sequence Labeling Using
Pseudo-Inverses

e Pseudo-Inverse Computation:

e Since A is typically over-determined (more rows than columns), compute the
Moore-Penrose pseudo-inverse A to find the least squares solution to the linear

system:

T ~1AT
At = (A A) A A_pinv = np.linalg.pinv(A)
e Solve for x: X = np.dot(A_pinv, labels)

x=A%Db print("weig! P X}
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Linear Regression for Sequence Labeling Using
Pseudo-Inverses

1 import numpy as np

2 from sklearn.feature_extraction.text import TfidfVectorizer

3

4 # Define the text data and labels

5 snippets = [

6 "John works at OpenAI.",

Y "Yesterday was very sunny.",

8 "She bought 300 shares of Tesla.",
12 ] He llovss b By Soccer. Feature names: ['300' 'tesla' 'to' 'very' 'was']
11 labels = np.array([1, @0, 1, 0]) FT?;ure matrlxo(A): 0 0 0 ]
Z N . . (0. 0. 0. 0.70710678 0.70710678]
13 # Inltlallze and ﬁt the TF_IDF Vectorlzer [@.70710678 0-70710678 0. 0- 0. ]
14 vectorizer = TfidfVectorizer(max_features=5) # Limit to 5 fe (0. 0. 1. 0. 0. 1
15 A = vectorizer.fit_transform(snippets).toarray() # Feature m golytion vector x: [0.70710678 0.70710678 0. 0. 0. ]
16

17 # Display feature names and the feature matrix
18 print("Feature names:", vectorizer.get_feature_names_out())
19 print("Feature matrix (A):\n", A)

21 # Step 3: Computing the Pseudo-Inverse and Solving
22 # Compute the pseudo-inverse of A

23 A_pinv = np.linalg.pinv(A)

24 x = np.dot(A_pinv, labels) # Solve for x

26  print("Solution vector x:", x)
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5.1 Solving Linear Systems

Gaussian Elimination with Numpy

» Representing Systems as Ax = b:
« Solving Equations Using np.linalg.solve:

» A linear system can be represented in matrix form where A is a matrix of
This function is used to find vector x such that Ax = b.

coefficients, X is a column vector of variables, and b is the result vector.
* Practical Example:

« Compact Form:
python
an @12 ... Qin x1 b1 S
as as? e Q2 T2 b2 A = np.array([[3, 11, [1, 2]])
A‘ - . - 3 =) ] X = . ] b = 2 h nn :\rray(f : 1)
. . T . . : x = np.linalg.solve(A, b)
_aml am2 PO amn _mn _bm p rint( ’ x)

Output should show the values of x that satisfy the equation.

« Methods for Solving:
e Gaussian Elimination

* LU Decomposition

« Matrix Inversion (if A is invertible)

INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024
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Solving Linear Systems with Gaussian Elimination

1 import numpy as np

2

3 # Define the matrix A and vector b

4 A = np.array([[3, 1], [1, 2]]) |

5 b = np.array([9, 8]) e
6 [1 2]
7 # Solve the linear system AXx = b Vector b:
8 [x = np.linalg.solve(A, b) i B
o] 5?12.1-1'(;?? vector x for Ax = b:
10 # Print the components and the solution

11  print("Matrix A:\n", A)

12 print("\nVector b:\n", b)

13  print("\nSolution vector x for Ax = b:\n", Xx)

14
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Gaussian Elimination

o Definition:

¢ A method for solving linear equations by transforming the system's matrix into an upper
triangular form using row operations, from which the solutions can be derived through

back-substitution.
¢ Process:
e Perform row operations to form a row-echelon matrix.
¢ Solve from the bottom row up (back-substitution).

e NumPy Implementation:

e« NumPy does not have a direct function for Gaussian Elimination, but

numpy. linalg.solve effectively uses this concept when applicable.

(P Copy code

numpy np
np.array([[2, 1, -1],

np.array([8, -11, -3])
np.linalg.solve(A, b)
print( , X)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Math Equations:

e Consider the system:
a1z + a2x2 + a3z = by
anTy + ATy + ars = by

a3y + agTy + azzrs = by
e Gaussian Elimination Process:

e Convert to REF:

! ! ! /
ap ap a | b
! 7 /

0 ajp ay | b
! /

0 0 a3 | b

¢ Solve from the bottom up:

bl
o 3=}
Qg3
b, —al,x3
L] ,‘1}2 = 2 - ,')'
Az
b —d xo—a .,z
= 1 127 13°%
e I . 7
an
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Gaussian Elimination: Numerical Example

e System of Linear Equations:

e Consider the system:
22+ 3y—2=2>5
de+y+22=26
—2x+5y—32=28

e Step 1: Row Echelon Form (REF):

e [|nitial Matrix:
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Gaussian Elimination: Numerical Example

e Step 1: Row Echelon Form (REF):

« Initial Matrix: o Step 2: Back Substitution:

« Begin with the simplest equation (from the last row, if possible), and solve for each

2 3 -1 |5 variable.
4 1 2 | 6
—9 B 3 | 8 « However, as noted previously, this system leads to an inconsistency, illustrating that

. Gaussian elimination not only solves systems but also identifies no-solution scenarios.
e Operations:

. R2=R2—2><R1

(4-2%x2)2+(1-2%x3)y+(2+2%x1)2=6—-2x5

0z — By + 42 = —4 e Solve from the bottom up:

bl
e R;=R3+ R 4 233:_13'
Qg3
(—2+2)z+(5+3)y+(-3—-1)z=8+5 . wzzég;g;ﬂ
Oz +8y —4z =13 1022 :
b, —al,x2—a ., z3
' - o 1= 2112 13
e Resulting Matrix: i ay,

¢ Simplify further if necessary and attempt back substitution.
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LU Decomposition

¢ Definition:

e LU Decomposition splits a matrix A into two factors: a lower triangular matrix L and an

upper triangular matrix U, such that A = L x U.

e Mathematical Concept: Uei
. sing scipy.linalg.lu:

¢ Decomposition Equation: e scipy.linalg.lu decomposes A into L and U and can be used to solve for x

using forward and backward substitution.

A=LxU
python (9 Copy code
e Where:
numpy )
o L is alower triangular matrix with ones on the diagonal. scipy:1inely =
o U is an upper triangular matrix. SelaRslon
A = np.array([[3, 21, [6, 41])
e Expanded Form: i
~ P, L, U= lu(A)
e Fora3 x 3 matrix A: print(
print(
a; ap a3 1 0 0 Ujp Uy Ug3
axn axp ax| = |lon 1 0| x| 0 up wu
asy as; ass Iy I3 1 0 0 us

e Application:

o Efficiently solve systems of equations Ax = b, particularly when dealing with multiple
right-hand sides or repeatedly using the same matrix A with different b vectors.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024




LU Decomposition: Numerical Example

e Given Matrix A:
e Consider the matrix:
4 3
e Step-by-Step LU Decomposition:
1. Initialize:

e Assume the form A = L x U where L is a lower triangular matrix with 1s on the

diagonal, and U is an upper triangular matrix.

. 1 0 (Y11 U2
el PR A
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LU Decomposition: Numerical Example

« Given Matrix A:

2. Decomposition: « Consider the matrix: L s
Ao ]
Y From Al]. — L11U11' 4 —_— 1 X ull so ull S 4_ « Step-by-Step LU Decomposition:
1. Initialize:
° From A12 — L11U12' 3 — 1 X u12 SO u12 f— 3' . AAssumetheformAA:LxI.TwhereLisaAIowertriangularmatrixwith1sonthe
diagonal, and U is an upper triangular matrix.
_ 1, {0 _ U u2
e FromAj =Ly1Uq,6 =101 x4soly =1.5. " b= [121 1]'U_ [0 “22]

e From A22 = L21U12 =+ L22U22, 3=15x3+1x U9 leading to uyy = 0.

e Resulting Matrices L and U:

- =[s 19=]o o

« Verification:

e The product L X U reconstructs A, though in this example, U has a zero row indicating
a degenerate (singular) matrix, which typically signals a problem with the matrix being
non-invertible or poorly conditioned for certain operations.
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LU Decomposition: Solving Ax=b

« Initial Setup:

« Given the matrix A and vector b, we first decompose A into L (lower triangular) and U « Stap 8:Solve Ux =y (Back substitition):

(upper triangular):
e Ux = y translates into:

e For our previous example: 4 3| |z — e
P P 0 0f |z| — |—6

4 3 24
A= , b=
6 3 30 « Normally, solve for 5 and z;:
* Step 1: Decompose A: ¢ This matrix shows an inconsistency or a special condition due to the zero row in U.

1 0
e AssumeL = [1'5 1

] ST = [g g] from the decomposition step. This indicates that the system may be underdetermined or have infinitely many

solutions depending on the consistency of the equations.

e Step 2: Solve Ly = b (Forward substitution): Conclusi
« Conclusion:

* Ly = b translates into: ) ) ) ) o
« In this case, the inconsistency due to the zero row in U means that the matrix A is
[ 1 0] [’!}1] _ [24] singular, and the system does not have a unique solution.

1.5 1| |y 30
« This example highlights a situation where the LU decomposition method exposes the

* Solve for y; and ys:
% L properties of the matrix A that affect the solvability of Ax = b.
s Y= 24

¢ 15x24+1y,=30=>1y,=30—36=—6
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Matrix Inversion

o Definition:

« Matrix Inversion involves calculating the inverse of a matrix A, denoted as A‘l, where
A x A1 =1, the identity matrix.

« Mathematical Concept: o Application:

« Inversion Equation: o Useful for solving linear systems Ax = b by transforming into x = A~1b.

o Critical in algorithms that require matrix operations like finding solutions to linear

AxAl=1

equations, computer graphics transformations, and optimization problems.

¢ Conditions:
« NumPy Implementation:

e A must be square (same number of rows and columns). Using (RRSESEEIENER to invert the matrix

e A must be non-singular (determinant # 0). — e

e Math Expanded: numpy np
A = np.array([[1, 21, [3, 41])

b = np.array([5, 11])
A_inv = np.linalg.inv(A)
x = np.dot(A_inv, b)

d

1 d -~
A= —
ad — be [—C a]

e The determinant ad — be should not be zero to ensure that the inverse exists.

e Fora2 X 2matrix A = [Z b]:
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Matrix Inversion: Solving Ax=b

Matrix Inversion: Numerical Example for Solving Ax = b
» Given Matrix A and Vector b:

e Consider the matrix:
e And the vector:

e Objective:

e Solve for x in Ax = b using matrix inversion.
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Matrix Inversion: Solving Ax=b

» Step 1: Calculate the Inverse of A

 Formula for Inverse of a 2x2 Matrix:

A = [-i ;b]

« Where a, b, ¢, d are the elements of A

det(A) = (3x1)— (4x2)=3-8=-5

el 1[1 —4]_[-02 08
— _5|-2 3|7 104 -0.6
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Matrix Inversion: Solving Ax=b

e Step 2: Solve for x:

e Using Matrix Inversion:

a1y [-02 08724
x=A"b= [0.4 —0.6] [10]

e Calculating x:
e (—0.2 X 24) 1 (0.8 X 10) =—48+8=3.2

2y = (0.4 x 24) — (0.6 x 10) = 9.6 — 6 = 3.6

x= 33
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Matrix Inversion: Solving Ax=b

1 import numpy as np

2

3 # Define the matrix A

4 A = np.array([[3, 2],

5 (4, 111) Matrix A:

6 [[3 2]

7 # Define the vector b (4 111

8 b = np.array{[24, 10]) Inverse of Matrix A:
? [[-0.2 0.4]
10 # Check if matrix A is invertible by calculating its determinant [ 9.8 -0.6]]
11 if np.linalg.det(A) != 0:

12 # Calculate the inverse of matrix A Vector b:

13 A_inv = np.linalg.inv(A) [24 10]

14 Solution vector x for Ax = b using A's inverse:
15 # Solve for x by multiplying the inverse of A with vector b [3.2 3.6]
16 X = np.dot(A_inv.T, b)

17

18 # Print the components and the solution

19 print("Matrix A:\n", A)

20 print("\nInverse of Matrix A:\n", A_inv)

21 print("\nVector b:\n", b)

22 print("\nSolution vector x for Ax = b using A's inverse:\n", Xx)

23 else:

24 print("Matrix A is not invertible, cannot solve using the inverse.")
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Solving a Linear System of Equations

¢ Introduction:

e Understanding the relationship between matrix operations and their geometric

interpretations can provide deeper insights into solving linear systems.
e Matrix Formulation:

e Matrix Representation:
¢ The system of equations can be represented in matrix form as:
2 1 5)
e Where A is the coefficient matrix, and b is the constant matrix.

e The equation system is:
Ax=Db
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Solving a Linear System of Equations

¢ Introduction:

e Understanding the relationship between matrix operations and their geometric

interpretations can provide deeper insights into solving linear systems.
e Matrix Formulation:

e Matrix Representation:
¢ The system of equations can be represented in matrix form as:
2 1 5)
e Where A is the coefficient matrix, and b is the constant matrix.

e The equation system is:
Ax=Db
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Solving a Linear System of Equations in 2D

* Translation to Linear Equations: Solving Ax=b by Intersection of Two Lines

10.0
e Derived Equations: — 21+X=5

7.5 4 1 | ! i —_— X1+ 3X2=7

e From the matrix form, the individual linear equations are:

5.0 1 : « ~ ,
e 2z, + x5 = 5 (From the first row of A and b) \
2.5 1 - : -

e 1 + 3xy = 7 (From the second row of A and b)

¢ Graphical Representation: X @b
¢ Plotting Strategy: —2.5 1
« These equations can be graphed by rearranging each into y = mx + ¢ form (where =307
1 is independent and x5 is dependent). 754
e Equation1: 2z, =5 — 2z, 6% | | | | |
7_ -100 -75 =50 -25 0.0 25 5.0 7.5 10.0
+ Equation 2: 3 = 5~ x1
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Solving a Linear System of Equations in 3D

 Introduction: . i :
Solving Ax=Db in 3D by Intersecting Planes

¢ In athree-variable system, each linear equation can be represented as a plane in three-
dimensional space. The solution to the system is the point or line where the planes

intersect.
e Equation Setup:
e Consider a system of three equations:
e z+2y+2z=4
e y—2z=0
e 2z +y+2=>5

¢ Graphical Representation in 3D:

« Each equation can be graphed as a plane in a 3D space defined by axes z, ¥, and 2.
¢ Plane Equations Derived:

e Planet:z=4—z — 2y

e Plane2:z =1y

e Plane3:z2=5—-2z —y
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Case Study: Linear Regression

* Problem Statement:

» Use linear regression to predict house prices based on features such as area, House Price Prediction

® Actual Prices
— Predicted Prices

(2100, 4007 "
number of bedrooms, and age of the house. , s

« Equation Setup:

350
(1700, 330)
« Represent the problem as Ax = b, where:

300

A = Feature Matrix, x = Weight Vector, b = Price Vector

Price (in thousands)

» Feature Matrix A:
250 1

« Rows correspond to houses, columns to features:
1 Area Bedrooms Age

(1100, 210)
[ ]
200 A -

A |1 2100 5 10
|1 1400 3 3 1000 1200 1400 1600 1800 2060 iy
1 1800 4 8 Area (square feet)

« Price Vector b:

e Prices of the houses in thousands:
400
b = |250
320

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024




Case Study: Linear Regression

* Problem Statement:

» Use linear regression to predict house prices based on features such as area,
House Price Prediction

00405

number of bedrooms, and age of the house. P (2100, 480

4001 predicted Prices | [ .

« Objective:
350 1
« Solve for x, the weights that best relate the features to the prices, using least squares to

minimize the difference ||[Ax — b||.

8
S

« This illustrates how linear algebra powers fundamental data science tasks, specifically

Price (in thousands)

through techniques like matrix operations and linear systems.

N
u
(=]

X, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)
print("weight vector (x):", x)

1 import numpy as np 100,210

2 A = np.array(| oo )

3 [1, 21e00], [1, 1400], (1, 180@], [1, 150e], [1, 19e0],

4 [1, 1700], [1, 1600], [1, 1850], [1, 2200], [1, 1100] ! | , | | | |
5 ] ) 1000 1200 1400 oy (Stﬁu(;(:e ki 1800 2000 2200
6 b = np.array([400, 250, 320, 260, 340, 330, 290, 315, 405, 210])

7

8

9

Weight vector (x):

[-4.58173935 0.18459577]

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

ANIS KOUBAA | 2024



Application of Linear Algebra in NLP: Spam Detection

« Context and Objective:

e Goal: Use linear algebra to classify emails as "spam" or "not spam" based on text
features.

« Application: Text classification in Natural Language Processing (NLP).
» Mathematical Formulation:
» Feature Matrix (A):
* Rows represent emails.

» Columns represent features (e.g., frequency of keywords like "free", "winner").

« Weight Vector (x):

« Contains weights for each feature determining their influence on the classification.

» Target Vector (b):

e Binary labels indicating spam (1) or not spam (0).

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

e Equation:
Ax=b
« Solve for x using least squares to minimize prediction errors:
x=(ATA)'ATb
e Practical Example:

« An email with higher frequencies of "free" might be classified as spam based on the
model's learned weights.

« NumPy Implementation (Simplified):

python {j\ Copy code

= np.array([[ ’
b p.array([1, ¢, 1, 2])

x = np.linalg.lstsq(A, b, rcond=
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Application of Linear Algebra in NLP: Spam Detection

O oo~ UL WN =

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
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import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder

# Sample data (emails)
emails = [
"Free money now!!! Click here.",
"Hi Bob, how about a game of golf tomorrow?",
"Act now, and earn millions without leaving home.",
"Please call your mother.",
"Exclusive offer: earn rewards rapidly with our new credit cards."

# Labels for the emails (1 for spam, @ for not spam)
labels = [1, 0, 1, 0, 1]

# Step 1: Feature extraction using TF-IDF
vectorizer = TfidfVectorizer(stop_words='english', max_features=10)
A = vectorizer.fit_transform(emails).toarray()

# Step 2: Encode labels
le = LabelEncoder()
b = le.fit_transform(labels)

# Step 3: Solving for weights x in Ax = b using least squares
# Assume X is matrix A, and y is vector b
X, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)

# Output results

print("Features names:", vectorizer.get_feature_names_out())
print("wWeight vector (x):", x)

print("Residuals:", residuals)

INTRODUCTION TO DATA SCIENCE

Features names: ['act' 'earn' 'home' 'leaving' 'millions' 'money' 'mother' 'new' 'offer’

‘rapidly']

Weight vector (x): [0.40043879 0.68771373 0.40043879 0.40043879 0.40043879 1.
0. 0.45196465 0.45196465 0.45196465]
Residuals: []

1 # New emails to classify

2  new_emails = [

3 "Get your free trial now!!!",

4 "Meeting rescheduled to next week.",

5 ""Make money fast by investing in stocks!"

6 1

7

8 # Transform new emails into feature space using the fitted vectorizer

9 new_features = vectorizer.transform(new_emails).toarray()

11 # Predict using the linear model (dot product of features and weights)
12 predictions = np.dot(new_features, x)

14 # Apply a threshold to classify emails as spam or not
15 spam_threshold = 0.5 # Adjust based on model tuning and validation
16 predicted_labels = ['spam' if score > spam_threshold else 'not spam' for score in predictions]

18 # Output predictions
19 for email, label in zip(new_emails, predicted_labels):
20 print(f"Email: {email}\nClassified as: {label}\n")

22  # Output model details

23  print("Features names:", vectorizer.get_feature_names_out())
24  print("Weight vector (x):", x)

25 print("Residuals:", residuals)

Email: Get your free trial now!!!
Classified as: not spam

Email: Meeting rescheduled to next week.
Classified as: not spam

Email: Make money fast by investing in stocks!
Classified as: spam
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Introduction to Matrix-Vector Multiplication

e Title: Understanding Matrix-Vector Multiplication

e Content:

e Brief introduction to matrices and vectors.

e Definition of matrix-vector multiplication.

e Basic mathematical representation: Av = w

e Where A is a matrix, v is a vector, and w is the transformed vector.
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Transforming Vector Orientation

1. Explanation:

e Multiplying by a matrix can rotate a vector in the plane. - Vector Rotation by Matrix Multiplication with Coordinates

B Original Vector (v)

e The rotation matrix R rotates a vector by an angle 0 in a counterclockwise direction. W e actor (w)

2. Example with a 2x2 Rotation Matrix: 1.0 4
« Matrix R for rotation by 0 degrees: (0.7,0.7)
R— cos(f) —sin(0) 0.5
~ |sin(@) cos(f)
e Vector v: § 0.0 | > (1.0,0.0
N
M= Y —0.5 -
3. Numerical Example: ) .
i g Pure Rotation Matrix
* Given: ¢ =45°, v = [0] det(R) = cos?(#) + sin®*(8) = 1
e Calculation: -1.5 | . :

T T T
=L:5 -1.0 -0.5 0.0 0.5 1.0 15

= X i
‘\,/_2 axis
=| %
¥2
2

ot [ ][
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Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

1. Explanation: BN Original Vector (v)
EEl Scaled Vector (w)
« Discuss how multiplying a vector by a scaling matrix changes its magnitude without 41
altering its direction.
« Scaling matrices multiply each component of the vector by a scaling factor, allowing for 31 HEea0H
differential scaling along different axes.
2. Introduction to Scaling Matrices: g ®
* Scaling Matrix S for different scaling factors s, and s, N loo. 10|
g |52 0
0 s, 0
» Where s, and s, are the scaling factors for the x and y components of the vector,
respectively. =L ;3 :

det(S) = (2)(3) — (0)(0) = 6
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Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

3. Numerical Example: Wi - Original Vector {v),
Il Scaled Vector (w)
» Given: .
o |1
* Vectory = 1 3 | 1(2.0,3.0)
* Scaling factors s, = 2and s, = 3
g,
» Calculation: >
» Applying S to v: 1A * H(1.0.1.0)]
T 2 0|1 |2
N |0 3| (1] |3 0 —>
* The vector v is scaled to w, changing its length but not its orientation relative to the
_1 T T I T
axes. -1 0 1 2 3 - B
\l’ X axis

det(S) = (2)(3) - (0)(0) = 6
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Scaling Vectors with a Scalar

1. Explanation: - Vector Scaling by Scalar Multiplication
B Original Vector (v)
» Describe how multiplying a vector by a scalar changes the vector's length but keeps its B Scaled Vector (w)
orientation (direction) unchanged. 8 -

» Scalars stretch or compress the magnitude of a vector without altering the angle it makes

with the axes. 6 | (3.0, 6.0)
2. Mathematical Formulation: _g
________________________________________________ <
: 3. Numerical Example: : : i
* Given: e ien: | 4
| 1 :
T | « Vectory = [2] :
» Vectorv = : | 1.0, 2.0)
Yy i e Scalara=3 X 2 o
i * Result: :
» Scalar o | 1 T3 :
1 . w=3 - !
. 3/ - [i |
T . 1 1 0
e Scalar Multlpllcatlon: | * The scaled vector w is three times longer than v but points in the same direction. |
T oz 0 i tll 6'3 2'3 10
s W =QUV = & y — oy X axis
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Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

3. Numerical Example: = ?!f.é?bﬁ?fﬁfiﬁ’
» Given: 4-
Vect :
L ] p—t
ector v 1 <l ‘ 2.0.3.0).
* Scaling factors s, = 2and s, = 3
R
; g 2

« Calculation: >

» Applying S to v: 1A H(1.0.1.0)]

w=so=3 ol 1] =13 |

* The vector v is scaled to w, changing its length but not its orientation relative to the

_1 T T I T
axes. -1 0 1 2 3 - B
\l’ X axis

det(S) = (2)(3) - (0)(0) = 6
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Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

* Given: B Original Vector (v)
1 Il Scaled Vector (w)
e \Vectorv = 4
0
 Scaling factors s, = 2and s, = 3 ; :
34 ‘ 1(2.0,3.0) |
¢ Calculation:
e Applying S to v: £ 5.
>

2 0] (1 2 !
w= Sv= [0 3] [0] = [Ol 1 H1.0.1.0) |

¢ Interpretation:

e The vector v is scaled to w, changing its length but maintaining its direction along the x-
axis.
_1 T T I T
-1 0 1 2 3 - B
X axis
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Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

. < 5
e Given: B Original Vector (v)
O Il Scaled Vector (w)
e Vectorv = 4 -
1
 Scaling factors s, = 2and s, = 3 A
¢ Calculation:
e Applying S to v: E 2

w= Sv= [g g] [(1)] — [g] 14 ;(1.0. 1.0) |

e The vector v is scaled to w, changing its length along the y-axis but maintaining its

¢ Interpretation:

direction along the y-axis. -1 ; : ; ;
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Eigenvectors and Eigenvalues in Matrix Scaling

Eigenvectors: . . L
Vector Scaling by Matrix Multiplication

e Vectors that remain in the same direction after a matrix transformation.

2 0 4
=5 3

The vectors [1, 0] and [0, 1] are eigenvectors.

B Original Vector (v)

" . Il Scaled Vector (w)
¢ In the scaling matrix:

34 | | (2.0, 3.0) |
Eigenvalues:
e Scalars by which the eigenvectors are scaled. § 2 1
e For the scaling matrix S:
14 | (1.0, 1.0) |

1
e Eigenvectorv; = [0] has eigenvalue A\; = 2.

0
e Eigenvector vy = [1] has eigenvalue Ay = 3.

Conclusion: -1 : . ; ;

 The matrix S scales the eigenvector [1,0] by 2 and [0, 1] by 3. RS

e These eigenvectors retain their original direction, and the eigenvalues represent the factors
by which they are stretched.
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Impact of the Largest Eigenvalue in Transformations

Key Concept:
o Dominant Eigenvalue: The eigenvalue with the highest magnitude has the greatest effect on g Vector Scaling by Matrix Multiplication
scaling the corresponding eigenvector. B Original Vector (v)
Il Scaled Vector (w)
¢ In the matrix:
4 -
2 0
3 | 1(2.0,3.0) |
0
e Eigenvalue Ay = 3 (corresponding to vy = [1]) is the largest.
i
¢ This means the scaling along the y-axis has a greater impact than scaling along the x- 5 21
>
axis.
Application in Data Science: 1+ j (1.0.1.0).

¢ In Principal Component Analysis (PCA):

+ The direction associated with the largest eigenvalue (principal component) captures the 0 +“">

most variance in the data.
e The principal components with larger eigenvalues have a greater influence on the = ! : ! !
-1 0 1 2 3 4 5

dataset's structure, reducing dimensionality while retaining the most significant

information.

Conclusion:

e The largest eigenvalue not only represents< the greatest scaling effect but also plays a key role
in identifying key patterns and structure:\l'. data.
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Eigenvalues and Eigenvectors Explained Simply

Imagine a Transformation:

e Think of a transformation like stretching, squeezing, or rotating objects in space.

¢ In math, we represent these transformations using matrices that act on vectors.

Special Vectors That Keep Their Direction:
« When we apply a transformation to most vectors, they change direction and length.
e However, eigenvectors are special because they do not change direction when transformed.

e They may get stretched (longer), compressed (shorter), or flipped (direction reversed), but

they still point along the same line.

Scaling Factors—Eigenvalues:
¢ The amount by which an eigenvector is stretched or compressed is called an eigenvalue.
¢ |If the eigenvalue is:
e Greater than 1: The eigenvector is stretched.
e Between 0 and 1: The eigenvector is compressed.
¢ Negative: The eigenvector flips direction.

e Zero: The eigenvector collapses to a point (uncommon in practical scenarios).

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024




A

Module 7:
EigenValues and
EigenVectors

7.1 Formal Definitions

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS




Introduction to Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

« Eigenvalues ()\): Scale factors that alter the magnitude of eigenvectors during a n e i § 5
transformation. (1 3 1)
2 1 3
Av = Av « Eigenvalues:
« Eigenvectors (v): Vectors that, when multiplied by a matrix A, change only in scale, not « Eigenvalue 1: 6.1819
direction. « Eigenvalue 2: 1.4116

e Eigenvalue 3: 2.4064
Importance in Linear Algebra A
« Eigenvectors:
e Core Concept: « Eigenvector 1: [—0.7118, —0.4042, —0.5744]
« Eigenvector 2: [—0.5665, —0.1531, 0.8097]

« Eigenvector 3: [0.4153, —0.9018, 0.1200]

¢ Fundamental to understanding matrix behavior.

¢ Indicative of system properties like stability and oscillation. . . .
o Verification of A - v = X - v for the first eigenvalue and eigenvector:

e Applications: o A-v=[-4.4002,—2.4989, —3.5511]

e Essential in disciplines from physics to economics, crucial for algorithms in Al like * A-v=[-4.4002, -2.4989, -3.5511]

dimensionality reduction.
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NumPy for Eigenvalues and Eigenvectors

(3 Copy code

# Define a square

A = np.array([[4, 11, [1, 4]])

eigenvalues, eigenvectors = np.linalg.eig(A)

print( env s:", eigenvalues)
print("E 1V :\n", eigenvectors)

Explanation
e Matrix A: Represents the system or transformation we are analyzing.
e Function np.linalg.eig : Calculates the eigenvalues and eigenvectors of matrix A.
¢ Eigenvalues: Indicate the magnitude of stretching.

« Eigenvectors: Show the directions that remain unchanged (except for scaling) under the
transformation.
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NumPy for Eigenvalues and Eigenvectors

Eigenvectors and Scaling by Eigenvalues

2.0r
B FEigenvector v1: [1. 0.]
I Eigenvector v2: [0. 1.]
15} EEE Stretched v1 (AL *v1): [2.0.]
: B Stretched v2 (A2 *v2): [0. 1.]
10 B A
0.5
Bt
s 0.0 > S
>
-0.5F
-1.0f
-1.5¢
—2.03 -2 -1 0 1 2
X axis
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« The blue and green vectors represent the original eigenvectors.

« The scaled (stretched) vectors show how the eigenvectors are scaled by their respective

eigenvalues.

Additionally, the printed values are as follows:
« Eigenvalue 1: 2.00, Eigenvector 1: [1.0.]

« Eigenvalue 2: 1.00, Eigenvector 2: [0.1.]

ANIS KOUBAA | 2024




Intuition Behind Eigenvalues and Eigenvectors

2
3
4
5
6
£
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
23/
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import numpy as np

# Define a 3x3 matrix

A = np.array([[4, 1, 2],
[ 30 1]
[250152311)

# Compute the eigenvalues and eigenvectors of the matrix A
eigenvalues, eigenvectors = np.linalg.eig(A)

# Print eigenvalues and eigenvectors

print("Matrix A:")

print(A) float64: eigenvalue

print("\nEigenvalues:")

for i, eigenvalue in enumerate( 2.406420654632711
print(f"Eigenvalue {i+1}: {eigenvalue}")

print("\nEigenvectors:")
for i, eigenvector in enumerate(eigenvectors.T): # Transpc
print(f"Eigenvector {i+1}: {eigenvector}")

# Verifying A % v = A x v for the first eigenvalue and eiger
v = eigenvectors[:, 0] # First eigenvector
lambda_ = eigenvalues[8] # First eigenvalue

# Compute A x v
Av=A@v

# Compute A x v
lambda_v = lambda_ * v

# Print results

print("\nVerification of A * v = A % v for the first eigenval
print("A x v =")

print(A_v)

print("\nA x v =")

Matrix A:
[[4 1 2]
[13 1]
[2 1 3]]

Eigenvalues:

Eigenvalue 1: 6.181943336052388

Eigenvalue 2: 1.4116360093148959
Eigenvalue 3: 2.406420654632711

Eigenvectors:

Eigenvector 1: [-0.71178541 -0.40422217 -0.57442663]
Eigenvector 2: [-0.5664975 -0.15312282 0.80971228]
Eigenvector 3: [ 0.41526149 -0.90175265 0.12000026]

Verification of A x v = A x v for the first eigenvalue and eigenvector:
Ax v =
[-4.4002171 -2.49887857 -3.55107291]

Ak V
[-4.4002171 -2.49887857 -3.55107291]
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Mathematical Representation

Mathematical Expression

e Equation:

For matrix A and vector v :

e Expanded Form:

e Numerical Application:

e Example with specific values:
3 0] |1] |3
0 2| |1] |2

Eigenvalues: 3, 2
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The Trace of a Matrix and its Connection to Eigenvalues

Definition: Trace of a Matrix:

e The trace of an n X n matrix A is the sum of the elements on its diagonal.
n
TI‘(A) = Z A,’i
i=1

a;; a
e Example: For matrix A = [ M, T2

, the trace is:
az; a2

Tr(A) = a1 + ax

Relationship to Eigenvalues:

e Forann X n matrix A, the trace is also the sum of its eigenvalues A1, Az, ..., Au:

TI(A)=A1+A2++A,"

e Example:

Lo |2 0
¢ Matrix S = [0 3]

e Eigenvalues: A\ = 2, Ao = 3

o Trace:Tr(S)=2+3=5

Conclusion:

e The trace provides a simple way to understand the sum of the eigenvalues of a square matrix,
and it plays a key role in many applications of linear algebra and data science.
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Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

Numerical Example:

e Given the matrix B:

=N

Il
N
(S JON )
N
N UL S WN

[
= ® W

Trace of the Matrix:

[
w N

e The trace is the sum of the diagonal elements:
Tr(B) =4+342=9

[
0N UL BS

Eigenvalues:

N =
S O

e The eigenvalues of this matrix are:
e A =~ 6.05
e Ay~ 1.64
e A3~ 131

NNNNNNNNN
W OoONOU S WN =

Conclusion:

w w
= o

e The trace is equal to the sum of the eigenvalues: 32
Tr(B)=A+X+X3=605+164+131=9 =
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# Define a new 3x3 matrix with real eigenvalues
B = np.array([[4, 2, 1],

2,03 011,

(1,1 21])

# Calculate the trace of the new matrix
trace_B = np.trace(B)

# Calculate the eigenvalues of the new matrix
eigenvalues_B, _ = eig(B)

# Display results with better print formatting
print("Matrix B:")

print(B)

print("\nTrace of B (sum of diagonal elements):")
print(f"Trace(B) = {trace_B}")

print("\nEigenvalues of B:")
for i, eigenvalue in enumerate(eigenvalues_B):
print(f"Eigenvalue {i+1}: {eigenvalue:.4f}")

# Calculate the sum of eigenvalues
sum_of_eigenvalues_B = np.sum(eigenvalues_B)

# Print the sum of eigenvalues and compare with trace
print(f"\nSum of Eigenvalues: {sum_of_eigenvalues_B:.4f}")
print(f"Trace of B: {trace_B}")

# Check if they are approximately equal
if np.isclose(sum_of_eigenvalues_B, trace_B):

print("\nThe sum of the eigenvalues is approximately equal to the trace of the matrix.")
else:

print("\nThe sum of the eigenvalues is not equal to the trace of the matrix.")
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Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

Matrix B:
[[4 2 1]
[2 3 1]
[1.2:211

Trace of B (sum of diagonal elements):
Trace(B) = 9

Eigenvalues of B:

Eigenvalue 1: 6.0489
Eigenvalue 2: 1.6431
Eigenvalue 3: 1.3080

Sum of Eigenvalues: 9.0000
Trace of B: 9

The sum of the eigenvalues is approximately equal to the trace of the matrix.
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# Define a new 3x3 matrix with real eigenvalues
B = np.array([[4, 2, 1],

2,03 011,

(1,1 21])

# Calculate the trace of the new matrix
trace_B = np.trace(B)

# Calculate the eigenvalues of the new matrix
eigenvalues_B, _ = eig(B)

# Display results with better print formatting
print("Matrix B:")

print(B)

print("\nTrace of B (sum of diagonal elements):")
print(f"Trace(B) = {trace_B}")

print("\nEigenvalues of B:")
for i, eigenvalue in enumerate(eigenvalues_B):
print(f"Eigenvalue {i+1}: {eigenvalue:.4f}")

# Calculate the sum of eigenvalues
sum_of_eigenvalues_B = np.sum(eigenvalues_B)

# Print the sum of eigenvalues and compare with trace
print(f"\nSum of Eigenvalues: {sum_of_eigenvalues_B:.4f}")
print(f"Trace of B: {trace_B}")

# Check if they are approximately equal
if np.isclose(sum_of_eigenvalues_B, trace_B):

print("\nThe sum of the eigenvalues is approximately equal to the trace of the matrix.")
else:

print("\nThe sum of the eigenvalues is not equal to the trace of the matrix.")
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Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

1 # Define a new 3x3 matrix with real eigenvalues

2 B = np.array([[4, 2, 1],

3 2,03 011,

4 (1,15 211)

5

6 # Calculate the trace of the new matrix

7 trace_B = np.trace(B)

8

9 # Calculate the eigenvalues of the new matrix

10 eigenvalues_B, _ = eig(B)

11

12 # Display results with better print formatting

13  print("Matrix B:")

14 print(B)

15 print("\nTrace of B (sum of diagonal elements):")

16 print(f"Trace(B) = {trace_B}")

17

18 print("\nEigenvalues of B:")

19 for i, eigenvalue in enumerate(eigenvalues_B):
20 print(f"Eigenvalue {i+1}: {eigenvalue:.4f}")
21
22 # Calculate the sum of eigenvalues
23 sum_of_eigenvalues_B = np.sum(eigenvalues_B)
24
25 # Print the sum of eigenvalues and compare with trace
26 print(f"\nSum of Eigenvalues: {sum_of_eigenvalues_B:.4f}")
27 print(f"Trace of B: {trace_B}")
28
29 # Check if they are approximately equal
30 if np.isclose(sum_of_eigenvalues_B, trace_B):
31 print("\nThe sum of the eigenvalues is approximately equal to the trace of the matrix.")
32 else:
33 print("\nThe sum of the eigenvalues is not equal to the trace of the matrix.")
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Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

Matrix A:
2 3 1
A=|1 5 4
3 2 6

Trace of A (sum of diagonal elements):
Trace(A) =2+5+6 =13

Eigenvalues of A:
« Eigenvalue 1: 9.5618 + 0.00005
e Eigenvalue 2: 1.7191 + 1.4728;5
e Eigenvalue 3: 1.7191 — 1.4728;

Sum of Eigenvalues:

———mmm e —— - — === — 4

[15 4]
(3 2 6]]

Trace of A (sum of diagonal elements):
Trace(A) = 13

|
|
I
|
|
I
I
Eigenvalues of A: 1
Eigenvalue 1: 9.5618+0.0000j |
Eigenvalue 2: 1.7191+1.4728j |
Eigenvalue 3: 1.7191-1.4728j |
|
I
I
|
I

Sum of Eigenvalues: 13.0000+0.0000j
Trace of A: 13

AL+ Az + A3 = 9.5618 + (1.7191 + 1.47285) + (1.7191 — 1.47285) = 13 + 0j

Conclusion:

¢ The sum of the eigenvalues 13 + 07 is approximately equal to the trace of matrix A, which is

13.
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Determinant and Eigenvalues of a Matrix

Definition: Determinant:

» The determinant of a square matrix A is a scalar value that describes certain properties of

the matrix, such as:
e Whether the matrix is invertible (non-zero determinant indicates invertibility).
e The scaling factor of the transformation described by the matrix.

« Foramn X n matrix A, the determinant is denoted as det(A).

Relationship to Eigenvalues:

e The determinant of a matrix is the product of its eigenvalues.

If A1, A2, ..., A, are the eigenvalues of matrix A, then:

det(A)=/\1x/\2><---></\n
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Determinant and Eigenvalues of a Matrix

Numerical Example:

e For matrix A:

A=

N
- D DN
DD =

e Eigenvalues: \; =~ 6.05, A\ =~ 1.64, A\3 ~ 1.31
e Determinant:
det(A) = 6.05 x 1.64 x 1.31 = 13.00

Conclusion:

e The determinant gives insight into the nature of the matrix transformation, and its value is

directly linked to the eigenvalues by their product.
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Determinant and Eigenvalues of a Matrix

1 # Define the 3x3 matrix

2 C = np.array([[4, 2, 1], Matrix C:

3 I2, 3, 1], 421'

4 15 1; 21173 [{2 3 1}

5

6 # Calculate the determinant of the matrix (112]]

7 det_C = np.linalg.det(C) .

8 Determinant of C: 13.0000
9 # Calculate the eigenvalues of the matrix
10 eigenvalues_C, _ = eig(C) Eigenvalues of C:
11 Eigenvalue 1: 6.0489
12 # Product of the eigenvalues Eigenvalue 2: 1.6431

13 product_eigenvalues_C = np.prod(eigenvalues_C) Eigenvalue 3: 1.3080
14
15  # Printing the results Product of Eigenvalues: 13.0000

16 print(f"Matrix C:\n{C}")

17 print(f"\nDeterminant of C: {det_C:.4f}")

18 print("\nEigenvalues of C:")

19 for i, eigenvalue in enumerate(eigenvalues_C, 1):

The determinant is approximately equal to the product of the eigenvalues.

20 print(f"Eigenvalue {i}: {eigenvalue:.4f}")

21

22  print(f"\nProduct of Eigenvalues: {product_eigenvalues_C:.4f}")
23

24 # Check if determinant and product of eigenvalues match
25 if np.isclose(det_C, product_eigenvalues_C):

26 print("\nThe determinant is approximately equal to the product of the eigenvalues.")
27 else:

28 print("\nThe determinant is not equal to the product of the eigenvalues.")

29
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Properties of Eigenvalues and Eigenvectors

1 # Importing necessary libraries
2 import numpy as np
3
4 # Define a matrix A (3x3 for illustration)
5 A = np.array([[4, 1, 2],
6 (1, 3, 11,
7 121, 3¥]) Matrix A:
8 [[4 1 2]
9 # Compute the eigenvalues of matrix A i1 .3:1)
10 eigenvalues = np.linalg.eigvals(A) [2 1 3]]
11
12 # Compute the trace of A (sum of diagonal elements) 1race of A (sum of diagonal elements): 10.00
13 trace A = np.trace(A) Sum of eigenvalues: 10.00
14 :
. Determinant of A: 21.00
15  # Compute th? determinant of A Product of eigenvalues: 21.00
16 det_A = np.linalg.det(A)
17
18 # Compute the sum and product of eigenvalues
19 sum_eigenvalues = np.sum(eigenvalues)
20 product_eigenvalues = np.prod(eigenvalues)

J
-
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Properties of Matrices with Eigenvalues and Eigenvectors

Key Properties:
1. Square Matrix:
* The matrix must be square (i.e., n X n) to have eigenvalues and eigenvectors.

e Example: A3 X 3 matrix like:

a b c
A=|d e f
g h 1

2. Non-Singular Matrix (for non-zero eigenvalues):

» A matrix is non-singular if its determinant is non-zero (det(A) # 0).

e |f the determinant is zero, at least one eigenvalue will be zero, indicating a singular matrix.
3. Real or Complex Eigenvalues:

e Eigenvalues can be either real or complex.

e Real symmetric matrices have real eigenvalues, while other matrices may have complex

eigenvalues.
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Properties of Matrices with Eigenvalues and Eigenvectors

4. Diagonalizable Matrices:

« A matrix is diagonalizable if it can be written as A = PDP !, where P is the matrix of

eigenvectors and D is the diagonal matrix of eigenvalues.
¢ Not all matrices are diagonalizable, but those with distinct eigenvalues always are.
5. Eigenvalue Multiplicity:

e Algebraic Multiplicity: The number of times an eigenvalue appears as a root of the
characteristic equation.

e Geometric Multiplicity: The number of linearly independent eigenvectors corresponding

to an eigenvalue.

Examples:

e For matrix A =

DN
R )
DN =

e |tis square, non-singular, and has real eigenvalues and eigenvectors.

Conclusion:

¢ Only square matrices have eigenvalues and eigenvectors, and their properties depend on the
matrix's structure (e.g., singularity, symmetry).
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Finding Eigenvalues

Step 1: Finding Eigenvalues ()

1. Set up the Characteristic Equation:
det(A—AI) =0

» det represents the determinant.
o [ is the identity matrix of the same dimension as matrix A.

2. Solve for X:

e The resulting equation will be a polynomial in A.

e The solutions to this polynomial are the eigenvalues of A.
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Finding Eigenvalues

Example:

. |4 2]
For a matrix A = [1 3].

1. Set up the characteristic equation:

4-—X 2
det(A—/\I)—det[ 1 3_/\:|=0

2. Solve for eigenvalues A.

3. For each eigenvalue, solve (A — A )v = 0 to find the eigenvectors.
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Step 1: Finding Eigenvalues

1. Set up the characteristic equation:

1 # Define the 2x2 matrix
2 A_example = np.array([[4, 2],

det(A—AI) =0 3 [1, 311)
4

o 5 # Identity matrix
Substituting A and I: 6 I_example = np.eye(2)
7
. R 2 8 # Symbolic eigenvalue variable (lambda)
det 1 3\ =0 9 from sympy import symbols, Eq, det, Matrix

10

11 # Define lambda symbolically
12 lambda_sym = symbols('lambda')

(4 — /\)(3 - /\) - (2)(1) =0 14  # Define the matrix A - lambdaxI
15 A_lambda = Matrix(A_example) - lambda_sym x Matrix(I_example)
16
17 # Calculate the determinant to find the characteristic equation
18 char_eq = det(A_lambda)

2. Calculate the determinant:

Expanding the determinant:

M —TA+10=0 19
20 # Solve for the eigenvalues (lambda)
3. Solve for A: Solving the quadratic equation: 21 from sympy import solve
22 eigenvalues_example = solve(char_eq, lambda_sym)
A1=2, A=05 -
24  eigenvalues_example
25

The eigenvalues of matrix A are A\; = 2 and Ay = 5.
[2.00000000000000, 5.00000000000000]
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Step 2: Finding Eigenvectors

Step 2: Finding Eigenvectors (v)

Now, for each eigenvalue, we will solve (A — AI')v = 0 to find the corresponding eigenvectors.

a7 2

Solving [i ﬂ [z] = [g],we get:

So, the eigenvector corresponding to Ay = 2 is:

1. ForA\; = 2:

Final Result:
» Eigenvalues:
e N =2

e XA2=5H

T=-y

 Eigenvectors:
2. For Ay = 5: 9

(A—5I)v=[415 335]=[_11 _22] e ForA; =2:v; =

e ForAy =5:vy =
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Visualization of the Eigenvectors

Eigenvectors of Matrix A

4
BN v1:([1,-1] (lambda = 2)

B \2:[2, 1] (lambda = 5)

.| . Final Result: |

» Eigenvalues: |

2 & Ay i

& . <[2,1] i . A2=5 i

£ : :

= Eigenvectors:

0 : [ 4 i

e ForA; =2:v; = _1]

5] | | legias | | P: |

1 {11 e Fordy =5:vy = 1]

_2 S N
=2 =1 0 1 2 3 4

X-axis
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Motivating Example — Why Use PCA?

¢ Imagine you're analyzing a dataset of students' performance across multiple subjects (Math,

Physics, Chemistry, etc.).

e Challenge: The dataset has many variables, and we suspect that some subjects are

correlated (e.g., students who do well in Math may also do well in Physics).

e Goal: Simplify the dataset by reducing the number of subjects, while retaining the most
important information about student performance.

T T T I e e e T A I R TS S S I S e T T

data = {
'Math': [85, 78, 92, 88, 76, 95, 89, 84, 91, 87],
'Physics': [82, 75, 9@, 85, 73, 94, 88, 81, 89, 86],
'Chemistry': [88, 79, 94, 91, 77, 97, 90, 86, 92, 89],
'English': [79, 74, 85, 8@, 70, 88, 83, 77, 84, 82]

Dataset:
¢ 10 students with scores in 4 subjects.

e Our goal is to simplify the analysis of student performance by reducing the number of
features (subjects) while keeping the most important information.

Student Math Physics Chemistry English
1 85 82 88 79
2 78 75 79 74
3 92 90 94 85
10 87 86 89 82
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Step 1 - Standardize the Data (Normalization)

Equation:
X —p
Z =
(o}
Where:
# Convert the data into a DataFrame
e X isthe original data. df = pd.DataFrame(data)
: # Step 1: Standardize the data
is th n.
*H =teifes # Subtract the mean and divide by standard deviation to standardize
i FIEthe standard danation. df_standardized = (df - df.mean()) / df.std()
Numerical Example (Math):
85 — 87.7
ZMath, Student 1 — W = —0.49

This step ensures that each subject contributes equally to the analysis.
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Step 1 - Standardize the Data (Normalization)

Student Math Physics Chemistry English
1 -0.25 -0.35 -0.05 -0.22
2 -1.42 -1.40 -1.49 -1.15
3 0.92 0.86 0.91 0.89
4 0.25 0.1 0.43 -0.04
5 -1.75 -1.70 -1.81 -1.88
6 1.42 1.46 1.39 1.44
7 0.42 0.56 0.27 0.52
8 -0.42 -0.50 -0.37 -0.59
9 0.75 0.71 0.59 0.70
10 0.08 0.26 0.1 0.33
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Step 2 - Calculate the Covariance Matrix

What is the Covariance Matrix?

e |t shows how much each feature (subject) varies with others.

Covariance Matrix:

Var(Math) Cov(Math, Physics)

Cov — | Cov(Physics, Math) Var(Physics)

- —

Example:

e Math and Physics might have high covariance because they are closely related.
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Step 2 - Covariance Matrix and Eigen Decomposition

Covariance Matrix: The covariance matrix represents how the variables (subjects) vary together.

Equation for Covariance:

Cov(X,¥) = —= Y (X; - X)(%; - ¥)

Eigenvalues and Eigenvectors:
o Eigenvalues tell us the amount of variance explained by each principal component.

o Eigenvectors define the direction of each principal component.
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Step 2 - Calculate the Covariance Matrix

### Step 2: Calculate the Covariance Matrix Covariance Hatrdx:

; : [[1. 0.99465467 0.99265481 0.98433819]
cov_matrix = np.cov(df_standardized.T) [0.99465467 1. 0.98031195 0.99155631]
print("\nCovariance Matrix:\n", cov_matrix) [0.99265481 0.98031195 1. 0.96962717]

[0.98433819 0.99155631 0.96962717 1. 1]

'1.00 0.99 0.99 0.98
0.99 1.00 0.98 0.99
0.99 0.98 1.00 0.97
0.98 0.99 097 1.00

Covariance Matrix =
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Step 3 - Eigen Decomposition

e Eigenvalues:

Eigenvalues _ [39566, 0.0338, 00079, 00016] ### Step 3: Compute Eigenvalues and Eigenvectors of the Covariance Matrix

eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

. Eigenvectors; print("\nEigenvalues:\n", eigenvalues)
print("\nEigenvectors:\n", eigenvectors)

0.5019 0.2018 —0.3465 —0.7664
0.5013 —-0.2614 —0.6227 0.5409
0.4982 0.6969  0.3959  0.3308
0.4986 —0.6366 0.5792 —0.1029

Interpretation:

e The first eigenvalue (3.9566) explains the largest portion of the variance, and the first
eigenvector points in the direction of maximum variation.

Eigenvalues:
[3.95661230e+00 3.38356070e-02 1.65383113e-03 7.89826523e-03]

Eigenvectors:
[[ 0.50190456 ©.20177656 -0.76638646 -0.34645321]
[ 0.50125904 -0.26142512 ©0.54094842 -0.62271268]
[ 0.49822683 0.69686993 0.33080625 0.39586558]
[ 0.49859925 -0.63664388 -0.1029263 0.57921458]]
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Step4 - Sorting Eigenvalues and Eigenvectors

Goal: Arrange the eigenvalues and their corresponding eigenvectors in descending order of

importance (variance explained).

Numerical Results:

e Eigenvalues (sorted in descending order):

A1 = 3.9566, Ay =0.0338, A3 =0.0079, A;=0.0016
o Eigenvectors (sorted based on the eigenvalues):
0.5019 0.2018
. _10.5013 . | —0.2614
Eigenvector, = 0.4982 | * Eigenvector, = 0.6969 | >
0.4986 —0.6366

Interpretation:

e The first eigenvalue (A; = 3.9566) explains the majority of the variance in the data.

e Eigenvector 1is the direction that captures the most variation in the data.

INTRODUCTION TO DATA SCIENCE

### Step 4: Sort Eigenvalues and Eigenvectors (i
# Sort the eigenvalues and their corresponding e
sorted_indices = np.argsort(eigenvalues) [::-1]
eigenvalues = eigenvalues|[sorted_indices]
eigenvectors = eigenvectors[:, sorted_indices]

Eigenvalues:
[3.95661230e+00 3.38356070e-02 1.65383113e-03 7.89826523e-03]

Eigenvectors:
[[ 2.50190456 ©0.20177656 -0.76638646 —0.34645321]
[ 0.50125904 -0.26142512 0.54094842 -0.62271268]
[ 0.49822683 0.69686993 0.33080625 ©.39586558]
[ 9.49859925 -0.63664388 -0.1029263 ©0.57921458]]
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PCA Transformation

Goal: Project the standardized data onto the eigenvectors (principal components).

Transformation Equation:

Zpc = Xstandardized * Eigenvector

PCA Transformed Data:
Student PC1 PC2 PC3 PC4
1 -0.434 0.148 0.155 0.011
2 -2.727 -0.227 0.113 -0.044
3 1.788 0.031 0.021 -0.029
4 0.375 0.347 -0.003 0.012
10 0.392 -0.184 0.048 0.077

Interpretation:

o The dataset has been transformed into the principal component space, where each student is
now represented by principal components (PC1, PC2, PC3, PC4).
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PCA Transformation

Goal: Project standardized data onto principal components (eigenvectors).

Compact Transformation Equation:

Zpc = Xstandardized * Bigenvector

Where:
o  X.iandardized 1S the matrix of standardized data.
» Eigenvector is the matrix of eigenvectors.

o Zpc is the transformed data in principal component space.
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PCA Transformation

Goal: Project standardized data onto principal components (eigenvectors).

Compact Transformation Equation:

Zpc = Xstandardized * Bigenvector

Where:
o Xitandardized IS the matrix of standardized data.
« Eigenvector is the matrix of eigenvectors.

e Zpc is the transformed data in principal component space.

Expanded Equation for PC1:

For each student (row in the dataset), the principal component Zp¢; is computed as:
Zpcr = (Xy x e11) + (X3 X e13) + (X3 X e13) + (X4 ¥ ey4)
Where:

o« X, X,, X3, X, are the standardized values for Math, Physics, Chemistry, and English.

e €11, €12, €13, €14 are the elements of the first eigenvector.
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Numerical Application (Student1)

Student Math Physics Chemistry English
e Standardized data for Student 1: 1 -0.25 -0.35 -0.05 0.22

X =[-025 -0.35 —0.05 —0.22]

e First Eigenvector:

[0.5019
0.5013
0.4982

0.4986 |

Eigenvector, =

« Computation of Zpci:
Zpc1 = (—0.25 x 0.5019) + (—0.35 x 0.5013) + (—0.05 x 0.4982) + (—0.22 x 0.4986)

Zpc1 = —0.1255 4+ —0.1755 + —0.0249 + —0.1097 = —0.434
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Numerical Application (Student1)

Student Math Physics Chemistry English
1 -0.25 -0.35 -0.05 -0.22
Numerical Application for PC2 (Student 1):
e Second Eigenvector:
[ 0.2018 |
Eigenvector, = ~H.200
& 2= | 0.6969
_—0.6366_

o Computation of Zps:
Zpca = (—0.25 x 0.2018) + (—0.35 x —0.2614) + (—0.05 x 0.6969) + (—0.22 x —0.6366)

Zpcs = —0.0505 + 0.0915 + —0.0348 + 0.1401 = 0.147
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Numerical Application (Student1)

Transformed Data for Student 1:

e PC1:—-0.434
e PC2:0.147

Summary:
e PC1represents the direction with the highest variance (captured by Eigenvector 1).
e PC2 adds more nuanced variation (captured by Eigenvector 2).

e This transformation reduces data dimensionality while retaining essential patterns.
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Questions

e What is a projection of a vector on another vector in space?
e Why covariance is used to select features?
e Why features projected on principal components represent the original data?
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Projection of Vector onto the X-axis

« Dot Product (v - u): s Projection of Vector v onto the X-axis
N v =[3,2]
o = EE x-axis unit vector [1,0]
[3, 2] . [1, 0] = (3 X 1) + (2 X O) =3 2.5 1 I | EEE Projection of v =[3,0]
¢ Normofu (”u”) === Projection line
2.0 - . A [3.2

Jul = V2402 =1

¢ Projection Calculation:

Y-axis

Proj,(v) = 31,0 = [3,0]

Numerical Example Summary:

e The dot product v - u = 3 measures the extent of v's alignment along the x-direction.

e The projection formula confirms that all of v's influence in the x-direction is captured, 0.5 1

resulting in a vector along the x-axis.

X-axis
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Projection of Vector v onto the Y-axis

Projection of Vector v onto the Y-axis

Dot Product and Norm Calculations: 3.0
N v =[32]
¢ Dot Product (v . u); EEl y-axis unit vector [0,1]
2.5 1 I | HEE Projection of v = [0,2]
- 1 1 |
[3, 2] 2 [0, 1] s (3 X 0) o (2 X 1) =9 Projection line
2.0 [o.2)_ e e

« Normofu (||ul)):

|lul| = v02+12=1 asl

« Projection Calculation: 2 10-
>
7 2
Proj,(v) = 7[0,1] = [0,2]
Numerical Example Summary: 0.0
e The dot product v - u = 2 captures the component of v along the y-direction.
_0'5 =
e The normalization ensures the projection scale is accurate, representing the y-component of
v without any scaling distortion. -1.0 : T T
-1 0 1 2 3 4
X-axis
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Projection of Vector v onto the Y-axis

- Projections of Vector v onto the X-axis and Y-axis

2.51

¢ Compact Formula:

[0,2] B2

v-u

e Expanded Formula Using Norm:

1.0 1

v-u v-u\l u A
Proj,(v) = ( )u = ( )
v) [ul|2 [all / (] W —

0.0 =-

=}

-0.5 0.0 0.5 10 15 2.0 25 3.0 35 4.0
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Projection of Vector v onto the Y-axis

python (3 Copy code

numpy np
° Compact FOrmUIa: # Define two vectors v and u
np.array([3, 41)
P ) ( v-u u = np.array([2, 1])
roj,(v) = u
Ju ”u||2 # 1. Projection of v onto u without normalization
proj_v_on_u = (np.dot(v, u) / np.dot(u, u)) * u
e Expanded Formula Using Norm:
# 2. Projection of v onto the normalized vector u (with normalization)
u_norm = u / np.linalg.norm{u) # Nor vector u
P . . v-u _ v-u u proj_v_on_u_normalized = np.dot(v, u_norm) % u_norm
3t =\ ) * = \ Tl ) Tl

# Results
print( M ov)
print( , u)

print( , Proj_v_on_u)
print( y , Proj_v_on_u_normalized)
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Introduction to Projection in Linear Algebra

Objective:
o \Vectors:
¢ Understand the concept of projecting one vector onto another in a 2D space using principles
. 1
of linear algebra. V= [z] y = [2]

Definition of Projection: *  Unit Vector Calculation:

¢ Projection of vector v onto vector u involves finding the component of v that lies along the = is [;]

direction of u. ¥ ;
¢ Projection Calculation:
Compact Formula: Proj (v) = 311 1
5 Vector Projection: Showing Projection of v onto u Ju - 4 \/—
¢ Projection of v onto u: il i
. x1+4x 1 1
o vew | -(25) [z]=—[z]
Proj,(v) = —nu ) 3 .
u-u B [2 2]
. . 3 T |44
Expanded Formula Using Unit Vector:
. v (3, 4]
- ull, 2]

e Unit vector & of u:

Y-axis
N

Emm Projection of v onto u
——- Dashed line from v to projection

e Projection using unit vector: 5
Proj,(v) = (v-4)d
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Introduction to Projection in Linear Algebra

Vector Projection: Showing Projection of v onto u

e Vectors:

e Unit Vector Calculation:

‘ R 1 |1
. v (3, 4] U= —7 D)
. ull, 2] | 5

mmm Projection of vontou ¢ Projection Calculation:
——- Dashed line from v to projection

1- /A reiu) = ([ 75 2]) 75
o -(Z5) =51
- 2]

Y-axis
N
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Understanding the Role of Projection in Data Science

Projection in Linear Algebra:
« Basic Concept: Projection is the process of mapping a vector onto a subspace, typically

represented by another vector or a set of vectors (basis).

* Mathematical Formulation: Using the dot product and norms, projection quantifies how
much one vector lies in the direction of another.

Significance of Projection in Data Science:

« Dimensionality Reduction: In high-dimensional data analysis, projections are used to reduce
the number of dimensions while preserving as much information as possible.

« Principal Component Analysis (PCA): Projects high-dimensional data onto a lower-

dimensional subspace where the variance is maximized.

« t-Distributed Stochastic Neighbor Embedding (t-SNE): Projects complex data to two or
three dimensions for visualization, focusing on maintaining local structures and

relationships.

Interpretation and Visualization:
« Geometric Interpretation: In visualization, projections help simplify complex datasets by

reducing dimensions, allowing for easier exploration and understanding of data patterns.

* Predictive Modeling: Projections are used to transform features into a new space where they

might be more effective predictors in machine learning models.
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8.2 Application of
Projection in PCA.

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS




Reduce the Dimension of Features

Student Math Physics Chemistry English

1 85 82 88 79

2 78 75 79 74

3 92 90 94 85

10 87 86 89 82
aagé‘—;l—{" S D TR AN T TR N (N A |~ L0t 7 R s 2 S e i S e ) | AT AN

'‘Math': [85, 78, 92, 88, 76, 95, 89, 84, 91, 871,
'Physics': [82, 75, 9@, 85, 73, 94, 88, 81, 89, 86],
'Chemistry': [88, 79, 94, 91, 77, 97, 90, 86, 92, 89],
'‘English': [79, 74, 85, 8@, 70, 88, 83, 77, 84, 82]
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Step 1 - Standardize the Data (Normalization)

Student Math Physics Chemistry English
1 -0.25 -0.35 -0.05 -0.22
2 -1.42 -1.40 -1.49 -1.15
3 0.92 0.86 0.91 0.89
4 0.25 0.1 0.43 -0.04
5 -1.75 -1.70 -1.81 -1.88
6 1.42 1.46 1.39 1.44
7 0.42 0.56 0.27 0.52
8 -0.42 -0.50 -0.37 -0.59
9 0.75 0.71 0.59 0.70
10 0.08 0.26 0.1 0.33

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024




Step 2 - Calculate the Covariance Matrix

### Step 2: Calculate the Covariance Matrix Covariance Hatrdx:

; : [[1. 0.99465467 0.99265481 0.98433819]
cov_matrix = np.cov(df_standardized.T) [0.99465467 1. 0.98031195 0.99155631]
print("\nCovariance Matrix:\n", cov_matrix) [0.99265481 0.98031195 1. 0.96962717]

[0.98433819 0.99155631 0.96962717 1. 1]

'1.00 0.99 0.99 0.98
0.99 1.00 0.98 0.99
0.99 0.98 1.00 0.97
0.98 0.99 097 1.00

Covariance Matrix =
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Importance of Eigenvalue Decomposition in Feature
Reduction

Objective:

» Understand why eigenvalue decomposition of the covariance matrix is essential for reducing
the number of features in a dataset.

Background:

» The covariance matrix quantifies the linear relationship between variables in a dataset. Each
element represents the covariance between two features, reflecting how changes in one
feature correspond with changes in another.

Covariance Matrix Representation:

* The provided covariance matrix:

1.00 0.99 0.99 0.98
0.99 1.00 0.98 0.99
0.99 0.98 1.00 0.97
0.98 0.99 0.97 1.00
This matrix shows high correlations between all pairs of features, indicating redundant

information.
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Importance of Eigenvalue Decomposition in Feature
Reduction

« Simplification: Eigenvalue decomposition helps identify the principal components (directions
in the feature space that maximize variance). This process transforms correlated features into
a set of linearly uncorrelated features called principal components.

» Dimensionality Reduction:

» Eigenvalues: Indicate the amount of variance carried by each principal component. A
higher eigenvalue means more variance (information).

» Eigenvectors: Define the direction of each principal component in the original feature

____________________________________________________________________________________________
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Process of Reduction B

Compute Covariance Matrix
Decompose Covariance Matrix
1. Decompose the covariance matrix to find its eigenvalues and eigenvectors.
2. Sort the eigenvalues (and corresponding eigenvectors) from highest to lowest. i e

3. Select the top k eigenvectors as principal components to capture the significant variance. T :

4. Project the original data onto the space defined by the selected eigenvectors, reducing the

Select Top k Eigenvectors

dimensionality from four features to k principal components.

Project Original Data onto New Basis

Reduced Data with k Principal Components

)
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Step 3 - Eigen Decomposition

e Eigenvalues:

e - ### Step 3: Compute Eigenvalues and Eigenvectors of the Covariance Matrix

Eigenvalues = i3§5 6300338,00079,00016] eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

. Eigenvectors; print("\nEigenvalues:\n", eigenvalues)
print("\nEigenvectors:\n", eigenvectors)

I.5019‘. 0.2018 —0.3465 —0.7664
p.5013: —0.2614 —0.6227 0.5409
0.4982, 0.6969  0.3959  0.3308
0.49861 —0.6366 0.5792 —0.1029

Interpretation:

e The first eigenvalue (3.9566) explains the largest portion of the variance, and the first

eigenvector points in the direction of maximum variation.

Eigenvalues:
[3.95661230e+00 3.38356070e-02 1.65383113e-03 7.89826523e-03]

Eigenvectors:
[[ 0.50190456 ©.20177656 -0.76638646 -0.34645321]
[ 0.50125904 -0.26142512 ©0.54094842 -0.62271268]
[ 0.49822683 0.69686993 0.33080625 0.39586558]
[ 0.49859925 -0.63664388 -0.1029263 0.57921458]]
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Step4 - Sorting Eigenvalues and Eigenvectors

Goal: Arrange the eigenvalues and their corresponding eigenvectors in descending order of
importance (variance explained).

Numerical Results: | Dominant EigenVector and EigenValue |

e Eigenvalues (sorted in descending order):

: i 3.9566,: A2 = 0.0338, A3 =0.0079, A;=0.0016
o Eigenvectors (sorted based on the eigenvalues):
'[0.5019], 0.2018
. _1]0.5013 |; . | —0.2614
Eigenvector; = 0.4982 |1 Eigenvector, = 0.6969 | ***
[0.4986 ), —0.6366

Interpretation:

e The first eigenvalue (A; = 3.9566) explains the majority of the variance in the data.
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### Step 4: Sort Eigenvalues and Eigenvectors (i
# Sort the eigenvalues and their corresponding e
sorted_indices = np.argsort(eigenvalues) [::-1]
eigenvalues = eigenvalues[sorted_indices]
eigenvectors = eigenvectors[:, sorted_indices]

Eigenvalues:
[3.95661230e+00 3.38356070e-02 1.65383113e-03 7.89826523e-03]

Eigenvectors:
[[ 2.50190456 ©0.20177656 -0.76638646 —0.34645321]
[ 0.50125904 -0.26142512 0.54094842 -0.62271268]
[ 0.49822683 0.69686993 0.33080625 ©.39586558]
[ ©.49859925 -0.63664388 -0.1029263 0.57921458]]
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Transforming Data Using PCA - Case of Dominant Eigenvector

Objective:

* Demonstrate how to transform high-dimensional standardized data into a new feature space

using Principal Component Analysis (PCA).

Dataset and Standardization:

» Standardized Data:

Features: Math, Physics, Chemistry, English

First Eigenvector (Principal Component):

» Eigenvector 1:

Transformation Formula:

Projection Calculation:

Z, = Data - Eigenvector,

—0.2506 —0.3467 -—0.0480 -—0.2217 0.5019
—1.4200 -1.4019 -1.4869 —1.1456| [0.5013
0.4982

0.0835  0.2563  0.1119  0.3326 0.4986

» Projected Features ( Z; Values ):

Z, =

[—0.2506 —0.3467 —0.0480 —0.2217]

—-1.4200 —-1.4019 -—1.4869 —1.1456

0.9188  0.8592  0.9113  0.8869

0.2506  0.1055  0.4317 —0.0370 Results of Projection:
—-1.7541 -1.7033 -—1.8066 —1.8847

1.4200  1.4621 1.3909  1.4413

0.4176  0.5577  0.2718  0.5174

-0.4176 —-0.4974 -0.3677 —0.5913

0.7517  0.7085  0.5915  0.7022
| 0.0835 0.2563  0.1119  0.3326 |

(0.5019 0.5013 0.4982 0.4986]
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[—0.4340]
~2.7274
1.7881
0.3753
—~3.5740
2.8572
0.8826
~0.9369
1.3773
| 0.3920 |
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Transforming Data Using PCA

Interpretation and Benefits:

» Dimensionality Reduction: Reduces the dataset dimensions from four features to a single
principal component.

» Variance Capture: Z; captures the most variance across the dataset, enabling efficient data
representation and analysis.
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Question
Is PCA Feature Representative of the Original Data?

Chersnsistry Features: Math, Physics, Chemistry, English

—0.2506 —0.3467 —0.0480 —0.2217
—-1.4200 -1.4019 —1.4869 —1.1456
0.9188  0.8592  0.9113  0.8869
0.2506  0.1055  0.4317 —0.0370
—-1.7541 -1.7033 —1.8066 —1.8847
1.4200  1.4621 1.3909 1.4413
0.4176  0.5577  0.2718  0.5174
—0.4176 —0.4974 -0.3677 —0.5913
0.75617  0.7085  0.5915  0.7022
0.0835 0.2563  0.1119  0.3326




Validating PCA's Representation of Original Data

Objective:

» lllustrate PCA's capability to maintain the essential characteristics of the original data through 1.00 0.99 0.99 0.98
0.99 1.00 0.98 0.99

0.99 0.98 1.00 0.97
Key Points: 10.98 0.99 0.97 1.00_

1. Variance as Information:

dimensionality reduction.

» PCA preserves variance, which represents the most informative aspects of the data.

2 Principal ComponentS' Numerical Results: | Dominant EigenVector and EigenValue

« Eigenvalues (softed in deééending ordér): '

« |dentify directions that maximize data variance. |A1=3.9566, A =0.0338, A3 =0.0079, X;=0.0016
« Eigenvectors (sorted based on the eigenvalues):
+ Capture core patterns and structures in the data. 'f0.5019]! 0.2018
Eigenvector —HOR01314 Eigenvector, = =02004
g 5 1710.4982 " 2 0.6969 |’
3. Mathematical Foundation: '[0.4986 ! —~0.6366

Interpretation:

» Covariance Matrix: Identifies the covariance between all pairs of features.

« The first eigenvalue (A\; = 3.9566) explains the majority of the variance in the data.
» Eigenvalues and Eigenvectors: Determine the amount of variance each component S A Sy S|
holds.
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Validating PCA's Representation of Original Data

Z, = [-1.50,—1.85,0.97,0.79, —1.48,1.54,0.59, —0.52, 0.91, 0.75]

4. Data Integrity:

* Projection: Transforms data to emphasize significant features without altering underlying Projection.of-Data onto.the Principal Comp 9“e“t With Goordinates

relationships. 154 @ Original Data | - g-0:-1:54)
® Projection on PC1
» Explained Variance Ratio: Quantifies the percentage of total variance represented by EEm Principal Component
each principal component. 1.0 1 7 ‘ : ? @0.97, 0.91)
0.79, 0.75)
5. Practical Visualization: @ 0.59)
S 0.5 ~
o]
* Compare scatter plots before and after PCA to verify consistency in data trends and a :
(5]
clusters. 2 0.26, 0.11)
2 00
6. Applications: B
2 &-0.2p, -0.37)
« Face Recognition: PCA in Eigenfaces shows effective feature retention. e -05 i i R§-0.44,-p.52)
©
» Genomics: Highlights patterns without distorting genetic information. §
; -1.0 1
7. Conclusion:
* PCA ensures that dimension reduction does not compromise the data's fundamental % &-1.50, -1.48)
characteristics, supporting its use in critical data analysis and feature reduction tasks. 185, -1.80)
20 ~-15 -10 -05 0.0 0.5 1.0 15

Standardized Math Scores
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Validating PCA's Representation of Original Data
Z, = [-1.50,-1.85,0.97,0.79, —1.48,1.54,0.59, —0.52, 0.91, 0.75]

Projection of Data onto the Principal Component with Annotations Prolectlon of Data onto the PrInCIPaI Compqnent with Coordinates

3] @ Original Data | _ 154 ® Original Data ‘ _ @1-30. 1.54)
— Principal Component Line : P Projection on PC1
Il Principal Component
gl | | . | : , 1.0 ? ‘ ? ? @0.97,0.91)
0.79, 0.75)
52,11.52) " 0.59)
§ 0.5 T
& 11— T T .94,0.94)
: V7, 0.77) i .
@ &651,051) 2 0.26, 0.11)
g @4 19,0.19 Zz 00
E . .19, 0.19) =
el
g 6.41,-031) - &-0.2p, -0.37)
E %48)-0.48) E 054 | | %-0.44, -D.52)
s ©
] c
n =11 E
wn
1.49,-1.49) 104
1.82,-1.82)
_2 - [
5w &-1.50, -1.48)
‘-1.85, -1.80)
_3 - ‘
3 5 B 0 1 > S -2.0 =15 -1.0 -0.5 0.0 0.5 1.0 1.5
Standardized Math Scores Standardized Math Scores
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PCA Transformation

Goal: Project the standardized data onto the eigenvectors (principal components).

Transformation Equation:

Zpc = Xstandardized * Eigenvector

PCA Transformed Data:
Student PC1 PC2 PC3 PC4
1 -0.434 0.148 0.155 0.011
2 -2.727 -0.227 0.113 -0.044
3 1.788 0.031 0.021 -0.029
4 0.375 0.347 -0.003 0.012
10 0.392 -0.184 0.048 0.077

Interpretation:

o The dataset has been transformed into the principal component space, where each student is
now represented by principal components (PC1, PC2, PC3, PC4).
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PCA Transformation

Goal: Project standardized data onto principal components (eigenvectors).

Compact Transformation Equation:

Zpc = Xstandardized * Bigenvector

Where:
o  X.iandardized 1S the matrix of standardized data.
» Eigenvector is the matrix of eigenvectors.

o Zpc is the transformed data in principal component space.
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PCA Transformation

Goal: Project standardized data onto principal components (eigenvectors).

Compact Transformation Equation:

Zpc = Xstandardized * Bigenvector

Where:
o Xitandardized IS the matrix of standardized data.
« Eigenvector is the matrix of eigenvectors.

e Zpc is the transformed data in principal component space.

Expanded Equation for PC1:

For each student (row in the dataset), the principal component Zp¢; is computed as:
Zpcr = (Xy x e11) + (X3 X e13) + (X3 X e13) + (X4 ¥ ey4)
Where:

o« X, X,, X3, X, are the standardized values for Math, Physics, Chemistry, and English.

e €11, €12, €13, €14 are the elements of the first eigenvector.
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Numerical Application (Student1)

Student Math Physics Chemistry English
e Standardized data for Student 1: 1 -0.25 -0.35 -0.05 0.22

X =[-025 -0.35 —0.05 —0.22]

e First Eigenvector:

[0.5019
0.5013
0.4982

0.4986 |

Eigenvector, =

« Computation of Zpci:
Zpc1 = (—0.25 x 0.5019) + (—0.35 x 0.5013) + (—0.05 x 0.4982) + (—0.22 x 0.4986)

Zpc1 = —0.1255 4+ —0.1755 + —0.0249 + —0.1097 = —0.434
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Numerical Application (Student1)

Student Math Physics Chemistry English
1 -0.25 -0.35 -0.05 -0.22
Numerical Application for PC2 (Student 1):
e Second Eigenvector:
[ 0.2018 |
Eigenvector, = ~H.200
& 2= | 0.6969
_—0.6366_

o Computation of Zps:
Zpca = (—0.25 x 0.2018) + (—0.35 x —0.2614) + (—0.05 x 0.6969) + (—0.22 x —0.6366)

Zpcs = —0.0505 + 0.0915 + —0.0348 + 0.1401 = 0.147
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Numerical Application (Student1)

Transformed Data for Student 1:

e PC1:—-0.434
e PC2:0.147

Summary:
e PC1represents the direction with the highest variance (captured by Eigenvector 1).
e PC2 adds more nuanced variation (captured by Eigenvector 2).

e This transformation reduces data dimensionality while retaining essential patterns.
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Book Recommendation System

What Is a Book Recommendation System?

* A system designed to predict and suggest books based on user preferences.

Key Objectives:
Book Book Book Book Book Book Book Book Book Book
1. User Satisfaction: Recommend books tailored to individual tastes. 1 2 3 4 5 6 7 8 9 10
u1 0 5 3 0 0 0 0 4 ;| 3
2. Platform Engagement: Keep users engaged and active. i | o : F o 5 5 > o 3 5
. o . . . U3 1 0 0 0 0 3 0 0 0 0
3. Inventory Insight: Guide inventory and marketing strategies.
u4 1 0 0 5 5 4 0 0 2 0
us 0 0 0 5 0 2 0 0 0 0
Challenges:
U6 5 3 5 4 0 5 0 0 0 0
» Diverse Preferences: Wide range of user interests. uz o 0 4 0 0 0 0 4 0 5
y . us 3 0 0 4 3 3 3 0 0 0
* Sparse Data: Users rate only a few books, creating gaps in the data.
u9 4 1 0 0 0 0 3 1 4 0
uio o 3 3 0 3 0 0 0 0 0

Need for SVD:

» Address Sparsity and Diversity: SVD helps uncover hidden patterns in sparse data,
improving prediction accuracy.

» Preparation for SVD: Understand how decomposing the user-book matrix can enhance
recommendation accuracy.
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Motivating Example - Book Recommendation System

. . User \ Book Book 1 Book 2 Book 3 Book 4 Book 5
Objective:

User 1 4 0 0 5 3
» Improve Book Recommendations: Utilize Singular Value Decomposition (SVD) to enhance — - K - o -
the accuracy and personalization of book recommendations on digital reading platforms. —— 5 = 3 F 5
User 4 0 0 0 5 4

Context and Problem Statement:
User 5 3 4 0 0 0

» Growing Digital Libraries: As digital libraries expand, users face overwhelming choices,
making it challenging to discover books that match their interests.

T i et e ot kA AR

» User-Item Interaction Matrix: Platforms collect data on user interactions (ratings, reviews,
etc.) with books, forming a vast but sparse matrix due to users typically interacting with only a

THANKING,
FAST .. SLOW

P

small selection of available books. . fl
<1 Lost

: 2 DANIEL
\ Bookshop#

Challenge: KAHNEMAN

[4

EVIE WOODS
A1 NEW YORK TINES BESTSELLING AuTHOR]

» Data Sparsity and Scalability: Most of the user-item interaction matrix entries are empty L
Thinking, Fast And Slow By Daniel

. . oteove The Lost Bookshop It Ends with Us

(unrated books), complicating the prediction of user preferences. by Evie Woods by Colleen Hoover Kahneman - Paperback

ok kK e v 2,379 e & ofr v 108,798 by Daniel Kahneman PhD
» Need for Personalization: Enhancing user engagement through tailored recommendations, Pap;tgk Papzlzck it
SAR 73 SAR 00 Paperback
o i 5 S 5 List: SAR79:00

necessitating sophisticated algorithms to predict user preferences accurately. /prime Today by 11PM /prime FREE One-Day SARB 38 | jst: santesoo
FREE delivery today on qualifying orders Get it tomorrow, 10 Oct /prime Today by 11PM
over SAR 100.00 Other format: Hardcover FREE delivery today on qualifying orders

over SAR 100.00

Other format: Hardcover
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User-Item Rating Matrix for Book Recommendations

M

Objective: Challenges in Building a Prediction Model:
g : . > . 1. Data Sparsity:
* Present the user-item rating matrix to illustrate the data structure used in book
* The majority of the matrix entries are zeros, indicating that most books

recommendation systems. have not been rated by most users.

* Challenge: How to accurately predict these missing ratings?

User-Item Rating Matrix: 2. Scalability:

« Challenge: Efficient computation and storage solutions are needed to
Book Book Book Book Book Book Book Book Book Book

manage and process large matrices.

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
« This matrix represents the ratings given by 10 users to 10 different books: : * Handling potentially large datasets with thousands of users and books. !
! 1
! 1
! 1
! 1
! 1
1 2 3 4 5 6 7 8 9 10 ! |
1

! 1

! 1

! 1

! 1

! 1

! 1

! 1

: 1

3. Accuracy:
U1 0 5 3 0 0 0 0 & 1 3 « Ensuring the model accurately reflects user preferences and recommends
U2 0 - 4 0 0 0 0 0 0 0 books that users will genuinely enjoy.
* Challenge: Overcoming biases and ensuring diversity in recommendations.

U3 1 0 0 0 0 3 0 0 0 0 | e e e - !
u4 1 0 0 5 5 4 0 0 2 0 Ul 0 5 3 0 00 0 4 1 3

v3 1.0 0 003 00 0O
U6 5 3 5 4 0 5 0 0 0 0 U4 1 0 0 5 5 4 0 0 2 0O
uz o 0 4 0 0 0 0 4 0 5 Uus 0 005020000

U6 5 3 5 4 05 0 0 0 O
ve |3 0 0 4 3 3 3 0 0 0 U7 00 40000405
U 4 1 0 0 0 0 3 1 4 0 v 3 00 43 3 3000

U9 41 0 0 0 O0 3 140
u10 0 3 3 0 3 0 0 0 0 0 U0 0 3 3 0 3 00 0 0 O
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Introduction to Singular Value Decomposition (SVD)

SVD Explained Simply
« Whatis SVD?

« A mathematical technique that breaks down a matrix A into three

simpler components: U, £, and V1.

Components of SVD:

1. U - User Features Matrix:

o Captures hidden preferences of users.
2. 2 - Singular Values Matrix:

» Indicates the importance of each hidden feature.
3. VT - Book Features Matrix:

« Describes characteristics of books.
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Introduction to Singular Value Decomposition (SVD)

Formula:

e« A=UXVT

« Decomposes the user-book ratings matrix A.

WHyllgesSvbD? e |
Latent Features

e Insight: Uncovers underlying patterns in user ratings.

» Predictions: Improves accuracy of book recommendations.
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Latent Features Explained

What Are Latent Features?

» Definition: Hidden characteristics inferred from observable data patterns.

Role in Data Analysis:
» Capture Essentials: Summarize complex data into core elements.

» Improve Predictions: Enhance accuracy in systems like recommendation engines.

Example:
« Book Ratings: Latent features could represent genres or themes that aren't explicitly
mentioned but influence user preferences.
SVD Connection:

« Decomposition: SVD identifies these features through the matrices:

« U: User affinities to features.
» X: Importance of each feature.

« V7T:Book alignment with features.
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Applying SVD to a 5x5 Rating Matrix

Original Rating Matrix A

e Represented as:

5 3 0 0 O
4 0 0 3 4

A=10 0 0 4 4
0 3 4 0 O
0 4 4 0 0]

SVD Decomposition
« Decomposed into three matrices U, 3, and V'

A=UxvVT
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Applying SVD to a 5x5 Rating Matrix

Components:

1. U - User Features Matrix:

—-0.48 —-0.18 0.73 —0.41 —0.19]
—-0.65 0.38 0.07 061 0.24
U= |-043 0.39 -0.56 —0.56 —0.21
—-0.26 —0.54 —0.28 0.35 —0.66
—0.31 —0.62 —0.27 —0.16 0.65 |

2. ¥ - Singular Values (Diagonal Matrix):

861 0 0 0 0
0 774 0 0 0
=] 0 0 531 0 0
0 0 0 127 0
0 0 0 0 018

3. VT - Book Features Matrix:

—0.58 —0.40 —0.27 —0.43 —0.50
0.09 —-0.60 —0.60 0.35 0.40
vI—=1074 006 —041 -—0.38 —0.36
0.29 —0.65 060 —0.33 0.15
—0.15 0.23 -0.21 —0.67 0.66
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