Jlalw poll Acola | e ‘N Robotics &
N S
princesumN_FY o I @ Internet-of.Things

INTRODUCTION TO Al AND DATA SCIENCE

CHAPTER 4
Integratin with ;
Practical Foundations for Data Science
LECTURE |

Vectors, Matrices, Dot Product
Normalization and Cosine Similarity

Prof. Anis Koubaa
SEP 2024

Do not distribute or share any slide without permission of the

What is NumPy?

e NumPy Overview
e A fundamental Python library for numerical computing.

e Provides support for large, multi-dimensional arrays and matrices. numpy np
Creati simp] array

¢ Includes a collection of mathematical functions to operate on these arrays. B '
a = np.array([1, 2, 3, 4, 5])

¢ Why NumPy? print(a)

 Performance: Implemented in C, providing fast execution.
Array [12 34 5]

e Functionality: Includes functions for linear algebra, Fourier transform, and random

number generation. dtype=int64

e Integration: Forms the basis of most Python-based scientific computing solutions.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Why Use NumPy?

e Advantages of NumPy

e Optimized for numerical operations with N-dimensional array support.

numpy np

» Essential for scientific computing with Python. # Creating a simple NumPy array
a = np.array([1, 2, 3, 4, 5])

» Facilitates complex mathematical functions and operations. SNt (a)

e Powerful Computing Capabilities

Array [12 34 5]
o Efficient operations with arrays and matrices.

. : . 2 dtype=int64
e Supports broadcasting and advanced indexing techniques.

e |Integrates C/C++ and Fortran code for high performance.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Install Numpy

é FOR (@‘

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

How to Install NumPy?

o Installation Guide
¢ Using pip (Python's Package Installer):
e Ensure Python and pip are already installed on your system.
e Open your command prompt (Windows) or terminal (Mac/Linux).

e Type the following command and press Enter:

(9 Copy code

pip install numpy

e Using Anaconda:

e Anaconda is a popular Python distribution for data science and machine learning that
includes NumPy.

¢ |If Anaconda is installed, NumPy can be installed via the Anaconda Prompt:
(9 Copy code

conda install numpy

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

How to Install NumPy?

Verifying Installation

e To ensure NumPy is installed correctly, run:

(P Copy code

numpy np
print(np.__version__)

This command will print the installed version of NumPy.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Scalars and NumPy
Basics

é FOR (@‘

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Understanding Scalars with Numpy

e Linear Algebra Concept:

« Definition of Scalars: Scalars are single numerical values that can represent

quantities like length or temperature.

« Operations with Scalars: Common operations include addition, subtraction,

multiplication, and division.
¢ NumPy Implementation:

o Creating Scalar Variables:
Using Scalars in NumPy:

(9 Copy code

e Scalars in NumPy behave similarly to numbers in
numpy np basic Python but are optimized for performance

X = np.array(5) # x is a lar in NumPy when used in array operations.

o Performing Arithmetic Operations with NumPy Scalars: They automatically integrate with NumPy's

universal functions for array-based computing.
(3 Copy code

s
X %
X /

print(

print(

print(

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Numpy Arrays
Basics

é FOR (@‘

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Understanding Scalars with Numpy

e 2.2 NumPy Array Basics

¢ Key Concepts:

e Python Lists vs. NumPy Arrays:

e Lists: Flexible, slow for large datasets.
e Arrays: Optimized for speed, designed for numerical operations.

e Advantages of NumPy Arrays: « Practical Application:

i ¢ Creating and Examining Arrays:
« Faster data handling. " i

ota s . 2 python (3 Copy code
¢ Built-in mathematical functions.

numpy np
np.array([1, 2,

o Efficient memory usage.

np.array([[1, 2,

, arrl.shape,

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Shape | Data Type | Dimension

Sc . The execution results for the NumPy array code are as follows:
opy code

e Attributes of arrl (One-dimensional array):

numpy np « Shape: (5,)
« Data Type: int64
Creating a one-dimensional array « Number of Dimensions: 1
arrl = np.array([1, 2, 3, 4, 51)

e Attributes of arr2 (Two-dimensional array):
Creating a two-dimensional array
« Shape: (2, 3)
arr2 = np.array([[1, 2, 31, [4, 5, 6]])
« Data Type: int64

Displaying attributes of arrl « NumberotDimensions: 2

print(I f 1:")

print(ne:", arrl.shape) # Outputs the shape of the array (['Attributes of arrl:',
print(:", arrl.dtype) # Outputs the data type of the array elements 'Shape: (5').'

print(:", arrl.ndim) # Outputs the number of dimensions

‘Data Type: int64',

] 3 1 .
Displaying attributes of arr2 Number of Dimensions:
print(Ite) [*\nAttributes of arr2:
print("st :", arr2.shape) # Outputs the shape of the array ‘Shape: (2, 3)',
print() :", arr2.dtype) # Outputs the data type of the array elements '‘Data Type: int64’',

rint ("N - arr2.ndim # OQutputs the number of dimensions . 2
prat(£) Pe : . ‘Number of Dimensions:

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Vectors & Numpy
Arrays

é FOR (@‘

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

1D Vectors (Arrays)

* Linear Algebra Concept:

« Definition of Vectors: Vectors are denoted as v = [vl, Vayeny vﬂ] in mathematics,

2D Ve;ctor Representation with Projections and Coordinates 3D Vector Representation with Projections and Coordinates
representing an ordered collection of n elements, each element a coordinate in n-

dimensional space.

o) IS I B
« Data Science Application: /
3]

* Feature Vectors: In data science, vectors are used as feature vectors, where each
element v; represents a distinct attribute or feature of a data point, crucial for

Y-axis
N

models in Al and machine learning.
« NumPy Implementation: /

* Representing Vectors Using 1D Arrays:

python (3 Copy code 0 1 2 o
E lizing a .
featura vector = np.array([5; # Define a 2D and a 3D vector
vector_2d = np.array([3, 4])
« Initializing Vectors: vector_3d = np.array([3, 4, 5])

python (3 Copy code

] and one
zero_vector = np.zeros(4)
one_vector = np.ones(4)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO D ANIS KOUBAA | 2024

NumPy Implementation:

« Performing Vector Addition and Subtraction:

Vector Operations

numpy np

v = np.array([2, 4, 6])
w = np.array([1, 0, 1])

3.2 Vector Operations
addition = v + w # V

subtraction = v - w #

* Operations in Linear Algebra:

« Scalar Multiplication:

» Addition and Subtraction of Vectors: .
python Copy code
e V= [2, 4, 6] scalar =
scaled_vector = v * scalar # Scalar multiplication

Vector Operations: Addition, Subtraction, and Scalar Multiplication

- w=[1,0,1]
» Addition:v+w =[2+4+1,4+0,6+ 1] = [3,4,7]

Vv + W (2.40, 5.20, 3.0

 Subtraction:v—-w =[2-1,4—-0,6 —1] = [1,4,5]

v-(2.40, 4.10, 1:50)

» Scalar Multiplication:

e Scalarc=3

[C'v=3‘[2,4,6]=[6)12)18] -

INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

CS316: INTRODUCTION TO DATA SCIENCE

Vector Operations Sum | Subtraction

Vector Operations: Addition, Subtraction, and Scalar Multiplication

NumPy Implementation:

Performing Vector Addition and Subtraction:

(3 Copy code

python
6

numpy np 5

v = np.array([2, 4, 6]) vV + W (240, 5.20, 3.00F 4
w = np.array([1, o, 1]) ’
addition = v + w # Vector v-(2.40, 4.10, 1:50) 2
subtraction = v - w # Vector s :

addition
v - w (2:40, 3.00, 0.00}

» Scalar Multiplication:
python opy code
C

scalar =

scaled_vector = v % scalar # Scalar multiplication

INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

CS316: INTRODUCTION TO DATA SCIENCE

2D Vector Operations - Sum | Subtraction

1 import numpy as np . Vector Operatiqns: Addition, Subtractiqn, and Sca;ar Multiplication (2D)
2 import matplotlib.pyplot as plt

3 8 - | | | v+ w(2.50, 8.00)

4 # Define the 2D vectors v and w

5 v = np.array([2.5, 4.5]) g

6 w = np.array([0.0, 3.5]) "

5 >

8 # Vector operations 21

9 addition = v + w i

10 subtraction = v - w H

11 ¢ =-0.75 =l

12 scalar_multiplication = ¢ * w , l , , | ,

13 ’ ’ ’ % ° ’ °

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Application of Vectors in Al

Image shape: (275, 183, 3)

Vectors in Computer Vision: Image array:
[[[255 255 255]
ded (255 255 255]
L]
Image Representation: [255 255 258]
* Images in computer vision are represented as vectors or matrices of pixel '[éés 255 255]
| [255 255 255]
values. [255 255 255]]
» For example, a grayscale image can be represented as a 2D array where each [[255 255 255]
| d hei itv of a pixel [255 255 255]
element corresponds to the intensity of a pixel. [255 255 255]
» Math Example: A 2 X 2 grayscale image might be represented in NumPy as: [255 255 255]
[255 255 255]
AR (3 Copy code [255 255 255]]

[[255 255 255]
[255 255 255]
num n

By P [255 255 255]

image = np.array([[?,

[255 255 255]
[255 255 255]
» This simple array shows how images are treated as numerical data, which Al [255 255 255]]

models can process to recognize patterns or features.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Application of Vectors in NLP

Vectors in Natural Language Processing (NLP):

1 import numpy as np
. = D)
. Word Representat|°n- 3 # Let's assume we have 3 words and we're embedding them in a 5-dimensional vecto
4 word_to_embedding = {
. . N . . 5 'apple': np.array([0.1, 0.3, 0.5, 0.7, 0.9]),
* Words in NLP are represented as vectors in a high-dimensional space (word 6 ‘banana': np.array([0.2, 0.4, 0.6, 0.8, 1.0]),
7 ‘cherry': np.array([0.3, 0.5, 0.7, 0.9, 1.1])
o }
embeddings). :

10 # Let's select a word to embed
. . o R . 11 word = 'apple’
* These vectors capture semantic meanings where words with similar meanings 12 _
13 # Get the word's embedding vector
. 14 embedding_vector = word_to_embedding[word]
are closer in the vector space. 15
16 # Display the embedding vector
17 print(f"Embedding vector for the word '{word}':")

o ' np " H i i
« Math Example: Representing the word "king" as a vector might be abstractly 2 Frin(emeddion et
. . . 20 # You can perform operations on these vectors, such as calculating similarity
VISU8|Ized as: 21 # For example, calculating the dot product between "apple" and "banana"
22 similarity = np.dot(word_to_embedding['apple'], word_to_embedding|'banana'l)
23
python @ COD‘,’ code ;;3 print(f"\nSimilarity (dot product) between 'apple' and 'banana': {similarity}")

Embedding vector for the word 'apple':
> [0.1 0.3 0.5 0.7 0.9]
king = np.array([

Similarity (dot product) between 'apple' and 'banana': 1.9

* This vector could be part of a model trained to perform operations like finding

synonyms or analyzing text sentiment.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Application of Vectors in NLP

Embedding vector for the word ‘'apple':

[-1.2599487 -0.87038326 -1.0834986 ©.5798379 0.03857595 -0.02588724
0.9775548 ©.31093895 0.19412561 -0.8062178 0.43808204 -1.8498268
-0.30574286 0.5693637 0.42844394 0.69174224 -0.7197368 -1.2614795
0.83457553 0.14667332 0.12171662 ©0.48029226 0.50147873 -0.4299112
0.5533447 0.8749714 0.71914 9.5731143 -0.5064311 0.38493997

1 import spacy -0.31778833 0.18084693 0.5162936 -0.00233826 0.1870515 -1.3773322
2 import numpy as np 1.009095 -0.10771251 1.6994228 0.78603184 -0.8166558 0.57896584
3 -0.5232718 0.7045958 -0.46308953 -0.37629813 -0.38788998 0.1730735

: ; -0.05550597 -0.17245518 0.62919456 0.87473 0.60047954 -0.27686393
4 # Load the small f"ghSh model 1 spaCy 0.8524152 -0.28676936 0.9972549 -0.71060055 0.11830124 —0.37214422
5 nlp = spacy.load("en_core_web_sm") -1.3039289 -0.02281845 0.4063236 -0.43118405 0.9401908 -0.02761412
6 -0.39026427 -0.29733896 0.78710043 -0.34422576 0.11906591 0.8003473

: ; 1.4978364 -0.38792044 -0.5264353 -0.38889915 -0.28553864 —0.22295064
7 # ChogsE a wolr"d and convert it to a vector using spaCy 0.8420893 -0.79365766 —0.0956156 -0.96640915 -1.1665895 -1.1019065
8 word = "apple -0.602306 0.765056 0.3859367 -0.31349194 -1.237845 0.11333084
9 doc = nlp(word) -1.6053262 ©0.14791119 0.6127024 1.0456864 0.8747115 0.6120273]
10 embedding_vector = doc.vector Shape of the embedding vector for the word ‘'apple' is (96,):
11
12 # Convert the spaCy vector to a NumPy array
13 embedding_vector = np.array(embedding_vector) Explanation:
14
15 # Print the embedding vector 1. We use the en_core_web_sm model from spaCy, which is a small pre-trained model for
16 print(f"Embedding vector for the word '{word}':") English.
17 print(embedding_vector) 2. Foraword like apple, we get the word's vector (embedding) using spaCy's doc.vector .
18
19 #Print the Shape of the vector 3. We print the embedding vector and demonstrate how to compute the similarity (in this case,
20 print(f"Shape of the embedding vector for the word '{word}' is {embedding_vector.shape}:") using the dot product) between two words (apple and banana).
21
Notes:

* The en_core_web_sm model uses relatively simple embeddings, but larger models (like
en_core_web_md or en_core_web_lg) provide richer embeddings with more detailed word
representations.

« If you want to use more advanced embeddings, you can download larger models or use pre-
trained models like GloVe or Word2Vec.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Vectors & Numpy
Arrays

Dot Product

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Dot Product

« Linear Algebra Concept:

* Dot Product: The dot product of two vectors, feature vector x and weight vector w,
. NumPy Implementation:
is calculatedas x - w = 2;‘:1 x;w;. This operation can be seen as a linear

. . « Computing Dot Product:
transformation of the features by the weights.

(Copy code
* Properties:
numpy np
« Commutative: X -w =w:- X np.array([2, 4, 6])
np.array([1, o, 1])
« Distributive over addition _product = np.dot(x, w)

dot_product_operator = x @ w

» Scalar multiplication compatibility

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Dot Product

¢ Definition: S (P Copy code

¢ The dot product of two vectors x and y is a scalar that represents the sum of the PURGY. € 1D

products of their corresponding components.

Define the v rs
+ Compact Math Form: np.array([2, 3, 4]1)
np.array([1, 0, -1])

© Xy =0Ty
* Expanded Math Form:

e the dot product us

dot_product = np.dot(x, y)
+ Given vectors x = [z1,Z2, 23] and y = [y1, Y2, y3), the dot product can be expressed

as:

Y1
X-y= [31 s xa] Ny | =z + Ta - Yy 4 T3 Y3 , dot_product)
Ys

* Numerical Example:
Vectors x and y:
X [2 3 4]
xy=2-14+3-0+4-(-1)=2+0-4=-2 y=[1 0 -1]
Dot Product (x - y)

» Forvectorsx = (2,3,4]andy = [1,0, —1]:

]
|
N

¢ Purpose:

* The dot product quantifies how much one vector extends in the direction of another, thus
providing a measure of alignment between the vectors. It is widely used to measure

vector similarity in various fields of mathematics and physics.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Why do We need Dot Product?

2.0

Equal Vectors

1.5 A

1.0 A

0.5

[Dot I5roduc' :

|1
"4

0.0

—0.5 1

—1.0

=159

-2.0

-2.0

-1.5 -1.0 -05 00 0.5

CS316: INTRODUCTION TO DATA SCIENCE

10 15 2.0

2.0

Perpendicular Vectors

1.5+

1.0 1

0.5 1

R

» Dot Produc' :

[11]

0.0

—0.5 A

=107

—-1.5 1

-2.0
-2.0

INTRODUCTION TO DATA SCIENCE

-1.5 -1.0 -05 00 05 1.0

1.5 2.0

ANIS KOUBAA | 2024

Why do We need Dot Product?

2.0

Equal Vectors

1.5 A

1.0 A

0.5

7~
/

[Dot I5roduc' :

|1
¥

0.0

—0.5 1

—1.0

=159

-2.0

-2.0

-1.5 -1.0 -05 00 0.5

CS316: INTRODUCTION TO DATA SCIENCE

10 15 2.0

INTRODUCTION TO DATA SCIENCE

Equal Vectors

2.0

1.5 1

1.0 A

0.5

2

[Dot I‘l'roduc' +1:0
[11]

0.0

—0.5 A

=107

=1:59

-2.0
-2.0

-1.5 -1.0 -05 0.0 05

10 15 2.0

ANIS KOUBAA | 2024

Why do We need Dot Product?

Equal Vectors

2.0

1.5 ~

1.0 A

0.5 A

‘ Dot Produc' A

1)

0.0

—0.5 1

=1-0:9

=1.5'

-2.0
-2.0

-1.5 -1.0 -05 0.0 0.5

CS316: INTRODUCTION TO DATA SCIENCE

1.0

1.5 2.0

Vectors at an Angle

2.0

1.5 A

1.0 A

0.5

A Dot Produc' 1.5

"[1 Q.S]

[11]

0.0

—0.5 A

-1.0 1

-1.5 1

-2.0
-2.0

INTRODUCTION TO DATA SCIENCE

-1.5 -1.0 -05 00 05

1.0

15 2.0

ANIS KOUBAA | 2024

Why do We need Dot Product?

Equal Vectors

2.0 Perpendicular Vectors
2.0 ‘
155 . . : | |
Dot Producf: 2 1.5 - ! !
Ayl Dot Product: -2
1.0 R — A {1:1)
1.0 - |
0.5 1 T T 1 /)/ { !
A 0.5 1
0.0 —
0.0
—0.5 1 1 1 ! 4 1! 1
—0.5 - 1 : :
—-1.0 1 ! ! { ! i ! /
-1.5 1
-1.5 1
_2-0 T T T T T T
-20 -15 -1.0 -05 00 05 10 15 20 -2.0 : : :

-20 -15 -10 -05 00 05 10 15 2.0

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Why do We need Dot Product?

Dot product (similarity) between 'apple' and 'banana': 911.4376831054688
Dot product (similarity) between 'apple' and 'lion': 161.2523651123047
Embedding Shape: (300,)

1 import spacy
2 import numpy as np

4 # Load the medium English model in spaCy for better embeddidgs
5 nlp = spacy.load("en_core_web_md") !
6

7 # Define the words
8 words = ["apple", "banana", "lion"]

10 # Get the embeddings for the words
11 embeddings = {word: nlp(word).vector for word in words}

13 # Display the embedding vectors
14 for word, vector in embeddings.items():

15 print(f"Embedding vector for '{word}':")
16 print(vector, "\n")
17

18 # Calculate the dot product between 'apple' and 'banana', and 'apple' and 'lion'
19 similarity_apple_banana = np.dot(embeddings['apple'], embeddings|'banana'l)
20 similarity_apple_lion = np.dot(embeddings|'apple'], embeddings('lion'])

22 # Print the results
23 print(f"Dot product (similarity) between 'apple' and 'banana': {similarity_apple_banana}")
24 print(f"Dot product (similarity) between 'apple' and 'lion': {similarity_apple_lion}")

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Why do We need Dot Product?

Dot product (similarity) between 'apple' and 'banana': 39.10390090942383 i
Dot product (similarity) between 'apple' and 'lion': 35.11163330078125 |
Embedding Shape: (96,) i

__

import spacy
import numpy as np

1

2

3 1
4 | # Load the medium English model in spaCy for better embeddings

5 | nlp = spacy.load("en_core_web_sm") !
6 ! !
7 # Define the words

8 words = ["apple", "banana", "lion"]

9

10 # Get the embeddings for the words
11 embeddings = {word: nlp(word).vector for word in words}

13 # Display the embedding vectors
14 for word, vector in embeddings.items():

15 print(f"Embedding vector for '{word}':")
16 print(vector, "\n")
17

18 # Calculate the dot product between 'apple' and 'banana', and 'apple' and 'lion'

19 similarity_apple_banana = np.dot(embeddings|['apple'], embeddings!['banana'])

20 similarity_apple_lion = np.dot(embeddings['apple'], embeddings('lion'])

21

22 # Print the results

23 print(f"Dot product (similarity) between 'apple' and 'banana': {similarity_apple_banana}")
24 print(f"Dot product (similarity) between 'apple' and 'lion': {similarity_apple_lion}")

25 print(f"Embedding Shape: {embeddings|['apple'].shape}")

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Vectors & Numpy
Arrays

Vector
Normalization

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Vector Normalization (L2)

e Definition:

« Vector normalization is the process of scaling a vector to have a unit length, i.e., a
magnitude of 1. This is accomplished by dividing each component of the vector by its
norm (magnitude).

¢ Purpose:

* Compact Math Form:

» The normalized vector ¥ of a vector v is given by: % Similadty of Tia Vactos:

« Normalization is crucial for methods like cosine similarity, where the similarity
-~
v —

v
reflects directional similarity, independent of vector length.

 Expanded Math Form: |

between two vectors is measured based on the angle between them, rather than
their magnitude. By normalizing vectors, we ensure that the similarity measure

* Givenavectorv = [vl, 6 i v,,], its normalized form ¥ is:

R v vy Vn
v /7 By SERSY
1 2 .- .. n

N N A/ BNy JERNY

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

CS316: INTRODUCTION TO DATA SCIENCE

Vector Normalization - Example

+ Expanded Math Form:

* Forvector v = [3,4]:

v =v32+4 =5

4
55

<
Il
| ey |

* Numerical Example:
+ Normalize v = [3,4].
+ Norm ||v| = 5.
» Normalized Vector v = [0.6, 0.8].
* NumPy Implementation:

. python (9 Copy code

numpy np
v = np.array([3, 4])

norm_v = np.linalg.norm(v)
normalized_v = v / norm_v
print(, V)
print(, norm_v)

print(, normalized_v)

INTRODUCTION TO DATA SCIENCE

Original vs Normalized Vector

3.0

2.9

2.0 A

15

1.0 1

0.5 1

r 4
BN Original Vector [3, 4]
I Normalized Vector [0.6, 0.8]

Origina

/

Normaliz?/

/ + Original Vector: (3, 4] - Shown in red
* Norm of the Vector: 5.0

+ Normalized Vector: (0.6, 0.8] - Shown in blue

0.0
0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ANIS KOUBAA | 2024

4.0

L1-Normalization

L1 Norm (Manhattan Distance):

« Compact Form:

n
Il =l
i=1

* Expanded Form:
+ Forvectorx = [21,Z2,...,%y):

x|y = |e1| + |22| + ... + |2n]

* Purpose: Measures the sum of the absolute values of the components. It is useful in
scenarios where differences of any size are equally important.

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

3.0

Original vs Normalized Vector

2.5

2.0 A

1.5 1

1.0 A

0.5 A

0.0

BN Original Vector [3, 2]
H Normalized Vector [0.6, 0.4]

| Origin

Normalize

0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ANIS KOUBAA | 2024

4.0

L2-Normalization

Original vs Normalized Vector

3.0
I Original Vector [0.83, 0.55]
L2 Norm (Euclidean Distance): BN Normalized Vector [0.6, 0.4]
2.5 - ' 1 4 4] ! |
« Compact Form:
2.0
x|z =
1.5 1
* Expanded Form:
* Forvectorx = [z1,Z,...,&,): 10+ | -Origin
Normalize
= 2 2
Ixllz =4/ 2f + a5 +... + 22 051
* Purpose: Measures the straight-line distance from the origin to the point in n-
dimensional space, which is useful for determining actual distances between points. 0.0 T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Normalization in Computer Vision

1 import numpy as np Original Grayscale Image Normalized Grayscale Image
2 import matplotlib.pyplot as plt 0
3 import requests

4 from PIL import Image

5 from io import BytesIO

2 i 50 -
7 # Load the image from a URL

8 image_url = "https://www.riotu-lab.org/cs313/cat.jpg"

9 response = requests.get(image_url)

10 img = Image.open(BytesIO(response.content))

11 100 1
12 # Convert the image to a numpy array

13 image = np.array(img)

14

15 # Convert the image to grayscale for simplicity

16 if image.ndim == 3: 1507
17 grayscale_image = np.dot(imagel..., :3], [0.2989, 0.5870, 0.1140])

18 else:

19 grayscale_image = image # if the image is already in grayscale

2 200 1
21 # Flatten the grayscale image to simulate a vector of pixel intensities

22 image_vector = grayscale_image.flatten()

23

24 # Compute the L2 norm of the image vector

25 12_norm = np.linalg.norm(image_vector) 250
26

27 # Normalize the image vector . . .
28 normalized_image_vector = image_vector / 12_norm

29 ° 1 print(normalized_image_vector)

30 # Reshape normalized image back to the original grayscale image dimensions

31 normalized_image = normalized_image_vector.reshape(grayscale_image.shape) v array([0.00524478, 0.00524478, 0.00524478, ..., 0.00524478, 0.00524478,
22 - 0.00524478])

33 # Plotting the original and normalized images

34 plt.figure(figsize=(12, 6)) [0.00524478 0.00524478 0.00524478 ... 0.00524478 0.00524478 0.00524478]

35

36 # Plot original image X ¢

37 plt.subplot(1, 2, 1) [43] 1 print(image_vector)

38 plt.imshow(grayscale_image, cmap='gray')

39 plt.title("Original Grayscale Image") 5+ [254.9745 254.9745 254.9745 ... 254.9745 254.9745 254.9745]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Normalization in NLP

1 import spacy

2 import numpy as np

3

4 # Load the medium English model in spaCy for word embeddings
5 nlp = spacy.load("en_core_web_md")

6

7 # Define the words

8 words = ["apple", "banana", "lion"]

9

10 # Get the embeddings for the words
11 embeddings = {word: nlp(word).vector for word in words}

13 # Display the embedding vectors and calculate their norms (L2 norm)
14 for word, vector in embeddings.items():

15 # Compute the L2 norm (Euclidean norm) of the word embedding
16 norm = np.linalg.norm(vector)

17 print(f"Vector norm (L2) for '{word}': {norm}")

18

Vector norm (L2) for 'apple': 43.36647415161133
Vector norm (L2) for 'banana': 31.6203556060791
Vector norm (L2) for 'lion': 55.14573287963867

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Vector norm (L2) for 'apple': 43.36647415161133
Vector norm (L2) for 'banana': 31.6203556060791
Vector norm (L2) for 'lion': 55.14573287963867

ANIS KOUBAA | 2024

Normalization in NLP

1 import spacy 1.0
2 import numpy as np Original L2 norm for 'apple': 43.36647415161133
3 Normalized L2 norm for 'apple': 1.0
= 2 < 2 Normalized vector for 'apple':
4 # Load the medium English model in spaCy for word embeddings [-0.02325298 -0.0468288 —-0.0148006 0.06209405 0.00732617 -0.06148067
E ile = soacv loadlVer core wabtmd® -0.08617717 0.12616658 -0.11933412 0.01198114 0.12657934 -0.04823542
P PACY {en. web_md*) -0.05749142 0.05338686 ©0.00906207 —-0.05597181 0.07896883 -0.06115323
6 0.05843454 -0.11089443 -0.04526769 0.11309428 -0.05865822 -0.03650285
7 # Define the words -0.08719639 -0.05750064 —0.05594414 0.08798733 0.01064832 0.02833064
48 = ["apple®. b W wlion®] -0.00483484 -0.03240522 -0.0555429 -0.05133689 0.0328249 -0.04312087
8 words = ["apple", anana-, 1on 0.05970511 0.07801418 0.06552527 -0.03466042 0.02447513 0.03105394
9 0.01761545 0.02147581 0.04973427 0.05345143 0.03137677 —0.00476566
- 0.06601644 0.01765949 0.0379579 0.01013041 0.0476451 -0.05680425
10 # Get t.he embeddings for the words| . -0.06277199 0.0271869 0.00095576 0.05129308 0.04127843 -0.01273749
11 embeddings = {word: nlp(word).vector for word in words} 0.06190266 0.08541851 —0.01359553 —0.00046061 -0.03268423 -0.0099736
12 -0.04702942 -0.12144865 ©0.01810177 ©.00215099 -0.01777687 0.04564355
. . -0.02931758 -0.01038959 ©0.05871356 0.0341093 -0.10125333 -0.06029081
13 # Function to normalize a vector 0.05877351 -0.03483567 0.00474906 0.0393207 -0.00729227 -0.01800561
14 def normalize vector(vector): 0.02562809 0.10181367 0.12546559 ©0.10126255 -0.06089958 0.02357812
e (vector) -0.00602862 0.07747921 ©0.06238921 -0.04965356 0.0086131 -0.00793977
15 norm = np.linalg.norm(vector) # Calculate the L2 norm 0.11659697 -0.06637616 -0.0374921 —0.07797268 -0.00067771 -0.03695481
16 if norm == @: # To prevent division by zero
17 return vector
18 return vector / norm
19
20 # Normalize the embeddings and show the result
21 for word, vector in embeddings.items():
22 normalized_vector = normalize_vector(vector)
23
24 # Show original and normalized vector norms
25 print(f"Original L2 norm for '{word}': {np.linalg.norm(vector)}")
26 print(f"Normalized L2 norm for '{word}': {np.linalg.norm(normalized_vector)}")
27 print(f"Normalized vector for '{word}':\n{normalized_vector}\n")
28

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Vectors & Numpy

Arrays
Cosine Similarity

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Cosine Similarity of Two Vectors

B ESTEo Cosine Similarity: 0.96
« Cosine similarity is a measure of similarity between two non-zero vectors within an inner 5 BN Vector a[3, 4]
product space that measures the cosine of the angle between them. B Vector b [4' 3]
« Math Equation:
« Compact Form: o
x .
Cosine Similarity(x,y) = e
[y
+ Expanded Form: 31
+ Givenvectors X = [&1,Z3,...,Z,| andy = [y1,¥2,. .., ¥Yn):
s 3 s T T 4+ &
Cosine Similarity = ——— Wt Tada = ,,2y,, 2
Vo +oi+... +22- P+ 4.+ 2
s Purpose:
« Similarity Measurement: 2
« Cosine similarity is widely used in various applications such as text analysis, where it
helps in identifying the similarity between documents. It is especially useful in high-
dimensional positive spaces like text data in TF-IDF representation.
O T T T T
« In machine learning, it helps in clustering and classification by measuring how similar 0 1 2 3 4 5

the data objects are, irrespective of their magnitude.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Cosine Similarity of Two Vectors

o 1 import numpy as np Numerical Example:
2 import matplotlib.pyplot as plt Consider two vectors in a 2D space:
3 + a=3,4]
4 # Define the vectors + b=1[4,3]
5 a = np.array([3, 4])
6 b = np.array([4, 3])
7
8 # Calculate the dot product
9 dot_product = np.dot(a, b)
10
11 # Calculate the norms of the vectors
12 norm_a = np.linalg.norm(a)
13 norm_b = np.linalg.norm(b)
14 Cosine Similarity(x,y) = —Y
s 2y i . T[Ty
15 # Calculate the cosine similarity
16 cosine_similarity = dot_product / (norm_a * norm_b)
17
18 print("Cosine Similarity:", cosine_similarity)
19

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Original Vectors

Il Vector a [3, 4]
= Vector b [4, 3]

2 3 4 5

Normalized Vectors
Cosine Similarity: 0.96

B Normalized a
mmm Normalized b

-0.25 4

—0.50

—0.75 4

—1.0

0 T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 100

ANIS KOUBAA | 2024

Cosine Similarity of Two Vectors

import spacy

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

Load the medium English model in spaCy for word embeddings
nlp = spacy.load("en_core_web_lg")

ONOULE WNR

9 # Define the words
10 words = ["apple", "banana", "fruit", "lion", "tiger", "leopard"]

11

12 § # Get the embeddings for the words

13 || embeddings = {word: nlp(word).vector for word in words}
14

15 # Function to normalize a vector
16 def normalize_vector(vector):

17 norm = np.linalg.norm(vector) # Calculate the L2 norm

18 if norm == @: # To prevent division by zero

19 return vector

20 return vector / norm

21

22 § # Normalize the embeddings

23 || normalized_embeddings = {word: normalize_vector(vector) for word, vector in embeddings.items()}
24

25 # Calculate pairwise cosine similarities
26 cosine_similarities = np.zeros((len(words), len(words)))

27

28 for i, wordl in enumerate(words):

29 . . PSR

30 I cosine_similarities[i, j] = np.dot(normalized_embeddings[wordl], normalized_embeddings [word2])
31

32 # Plotting the cosine similarities using a heatmap

33 plt.figure(figsize=(6, 5))

34 sns.heatmap(cosine_similarities, annot=True, cmap='coolwarm', xticklabels=words, yticklabels=words)
35 plt.title('Cosine Similarity Between Words')

36 plt.show()

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Cosine Similarity Between Words

1.0
@
=y 013 0.071
Q
m©
e 0.8
o
=
m©
Q
=
2 - 0.6
=
S
- 0.4
@
(2]
=]
° 0.2
o
Q
o
o

1 I
apple banana fruit lion tiger leopard

ANIS KOUBAA | 2024

The Impact of Normalization

1 import spacy
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns Cosine Similarity Between Words
5 3000
6 # Load the medium English model in spaCy for word embeddings @
7 nlp = spacy.load("en_core_web_lg") % ZAREELE] 1.6e+02 2.2e+02 9%
8
9 # Define the words i 2500
ig wardsi: [7apEleT,. TuaRanaz, (TEILT, THiont, tigeet, *lcopsds] FRCRTN R ERBTIRE] 2c+02 2.5+021.6e+02
12§ # Get the embeddings for the words 8
13I embeddings = {word: nlp(word).vector for word in words} I - 2000
= : : ERREISNEERISNED 76403 3.1e+02 3.4€+02 1.4¢+02
15 # Function to normalize a vector =
16 def normalize_vector(vector):
17 norm = np.linalg.norm(vector) # Calculate the L2 norm - 1500
18 if norm == @: # To prevent division by zero B 1.6e+02 2e+02 3.1e+02 3e+03 pEIRNOEICN: LN 0P
19 return vector e
20 return vector / norm
21 = - 1000
22 # Normalize the embeddings S, PRI PP RTE PR R 1.5e+03 1.4e+03 9e+02
23 normalized_embeddings = {word: normalize_vector(vector) for word, vector in embeddings.items()} =
24
500

25 # Calculate pairwise cosine similarities

26 similarities = np.zeros((len(words), len(words))) CI M SR BRI HP] 9.8e+02 9e+02 9.7e+02

leopard

28 for i, wordl in enumerate(words):

| T 1
29). apple banana fruit lion tiger leopard
30 similarities[i, j] = np.dot(embeddings(wordl], embeddings(word2]) I

32 # Plotting the cosine similarities using a heatmap

33 plt.figure(figsize=(6, 5))

34 sns.heatmap(similarities, annot=True, cmap='coolwarm', xticklabels=words, yticklabels=words)
35 plt.title('Cosine Similarity Between Words')

36 plt.show()

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Matrices

4.1 Understanding
Matrices

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

4.1 Understanding Matrices

« Compact Form:

a1 a2

A — [au (112:|

« Expanded Form:
o For a matrix A with general elements:
« Linear Algebra Concept: {1 2]
A=l3 4
» Definition of Matrices:

« Matrices are two-dimensional arrays of numbers, denoted as A with elements NumPy Implementation:

. o 4 & s « Creating Matrices with 2D Arrays:
a;j where ¢ and j are row and column indices, respectively.

python (@ Copy code

 Applications in Transformations: e

A = np.array([[1, 2], [3, 4]1)

» Matrices can represent linear transformations in space, such as rotations,
« Exploring Matrix Attributes:
scaling, and translations.

« Shape: Determines the dimensions of the matrix.

« Dtype: Indicates the data type of matrix elements.
(3 Copy code

, A.shape)
, A.dtype)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

4.2 Matrix Operations

e Matrix Addition and Subtraction:

» Addition or subtraction of two matrices of the same dimension results in a matrix
where each element is the sum or difference of corresponding elements.
« Compact Form:

a1l + bn
az1 + by

a2 + big

A+B=
a2 + ba

e Scalar Multiplication:

» Multiplying a matrix by a scalar multiplies each element of the matrix by the
scalar.

« Compact Form:
C* a2
C-*as

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Performing Matrix Operations (+, -, *):

numpy

np
A = np.array([[1, 2],

(=,
[1,

11)

B = np.array([[2, 2], 11)
addition = A + B
subtraction = A - B

scalar_multiplication = 2 *x A

ANIS KOUBAA | 2024

e

Matrices

4.2 Matrix Operation

é FOR (@‘

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

4.2 Matrix Operations

import numpy as np

Define the matrices
A=
B

Perform operations
addition = A + B
subtraction = A - B

10 scalar_multiplication =

O O NdOULULE & WN =

12 # Print the results
13 print("Matrix A:\n", A)

14 print("\nMatrix B:\n", B)

np.array([[1, 2], [3, 4]])
= np.array([[2, @], [1, 3]1])

15 print("\nAddition of A and B:\n", addition)
16 print("\nSubtraction of A from B:\n", subtraction)

17 print("\nScalar Multiplication of A by 2:\n", scalar_multiplication)

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

- Matrix A:

[[1 2]
3 4]]

Matrix B:
[[2 o]
[1 3]]

Addition of A and B:
[[3 2]
[4 7]]

Subtraction of A from B:
[[-1 2]
[2 1]1]

Scalar Multiplication of A by 2:
[[2 4]
[6 8]]

ANIS KOUBAA | 2024

4.2 Matrix Operations

Matrix Multiplication:

» The product of two matrices is a new matrix where each element is computed as ., gjven Matrices:

the dot product of rows of the first matrix with columns of the second. « Matrix A:
» Compact Form: 12
3 4
AxB~— a11bi1 + aba1 an1biz + ainba * Matrix B:
azbi1 + axby anbi + axbo 2 0
i)
« Matrix Multiplication:
Matrix Multiplication (np matmul @) « Matrix multiplication involves the dot product of rows of A with columns of B.
; , @):

« Calculation:

_ _[@-2+2.1) (1-0+2-3)]_[4 6
C_AXB—[(3_2+4_1) (3.0+4.3):|—|:10 12]

python (9 Copy code

matrix_multiplication = np.matmul(A, B)

or using the @ oj to
matrix_multiplication_alt = A @B

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Dot Product of Two Matrices

e Definition:

» The dot product of two matrices involves element-wise multiplication of two matrices of
the same size. The result is another matrix where each element is the product of

elements at corresponding positions in the original matrices.
(9 Copy code

« Math Equation:

e Compact Form:

ne the mat

p.array([[1,

C=A0B =
np.array([[2, @],
 Example: ‘
o2 2 0] ‘B
» For matrices A = [3 4] and B = [1 3]. |
print(“Mat
1-2 2-0 ek
e _ _— rint(
C—AGB [3.1 4_3] [,
e Purpose:

« This operation is often used in component-wise calculations required in applied

mathematics and certain types of statistical analyses.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Dot Product of Two Matrices

1 import numpy as np

2 Matrix A:
3 # Define the matrices [[1 2]

4 A =np.array([[1, 2], [3, 4]]) (3 4]
5 B = np.array([[2, @], [1, 3]])

6 i Y o Matrix B:
7 # Compute the dot product of matrices A and B {{23?}

8 dot_product = np.dot(A, B)

9 Dot Product of A and B:
10 # Print the results [[4 6]
11 print("Matrix A:\n", A) [10 12]]

12 print("\nMatrix B:\n", B)
13 print("\nDot Product of A and B:\n", dot_product)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Matrices

4.3 Special Matrices

é FOR (@‘

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Identity Matrix I5:

Identity Matrix |

o O
o = O

- o O
—

» Definition: An identity matrix I is a square matrix in which all the elements of the

principal diagonal are ones, and all other elements are zeros.

« Compact Form:

import numpy as np

Create a 4x4 identity matrix

I = np.eye(4) k 4x4 identity matrix
print("\nIdentity Matrix\n", I)

O =
o
S~ WIN =

- o - Identity Matrix
[[1. 0. 0. 0.]
[0. 1. 0. 0.]

» Multiplicative Identity: A x I = A Eg g ; 2}

» Properties:

]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Diagonal Matrix

« Definition: A diagonal matrix D is a matrix in which the entries outside the main

diagonal are all zero.

« Compact Form: 1 # Create a diagonal matrix
2 D = np.diag([1, 2, 3, 4])
3 # Extract the diagonal elements from D
_dl B oz O 4 diagonal_elements = np.diag(D)
0 d s 0 5 print("\nDiagonal Matrix\n", D)
D— 2 6 print("\nDiagonal Elements\n", diagonal_elements)
_O o --- d, Diagonal Matrix
- [[1 00 0]
[0 2 0 0]
Diagonal Matrix D 4: [0 0 3 0]
100 0 [0 0 0 4]]
D.— 0200
‘10030 Diagonal Elements
0 0 0 4

[1 23 4]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Module 5: Systems of
Linear Equations

5.1 Solving Linear
Systems

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Jlialw pall dcola

=T &>\ Robotics &
princesumN_FY o I @7 Internet-of.Things

INTRODUCTION TO Al AND DATA SCIENCE

CHAPTER 4
Integratin with ;
Practical Foundations for Data Science
LECTURE 2

Determinant, Rank, Full Rank Matrix,
Inverse Matrix, Pseudo-Inverse Matrix, Solving Linear Systems

Prof. Anis Koubaa
SEP 2024

Do not distribute or share any slide without permission of the

e

Module 5:
Determinants and Rank

5.1 Determinants

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

6.1 Determinants

+ Numerical Example:
* Problem Statement:

« Definition of Determinants: « Calculate the determinant of the matrix A and interpret the resuilt.

« The determinant of a square matrix A is a scalar value that is computed from o e MatiA:

3 4

Laplace expansion or by using elementary row operations. p——

e Mathematical Formula (Compact): o Using the compact formula: det(A) = 1(4) —2(3) =4 — 6 = —2

« Interpretation: Since det(A) # 0, matrix A is invertible, and the transformation

it represents is area changing by a factor of 2 and reversing the orientation

e Fora2x2 matrix A = [a b] :
c d

1

1

1

1

1

1

1

1

1

|

1

the elements of the matrix. It is defined recursively and can be calculated via i A= [1 2]

1

1

1

1

1

1

1

1

1

|

| (indicated by the negative sign).
1
1

det(A) = ad — be oo

+ Expanded Formula for a 3x3 Matrix:

a b ¢ « Invertibility: A non-zero determinant indicates that the matrix is invertible.
g h 1

volume scaling factor of the transformation defined by the matrix, and its sign

|
|
|
o Formatrix A= |[d e f]|: I
|
|
: indicates the orientation (positive or negative).

|
|
|
I
» Volume and Orientation: The absolute value of the determinant represents the
|
|
I

det(A) = a(ei — fh) — b(di — fg) + c(dh — eg)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

6.1 Determinants

¢ Definition of Determinants:

The determinant of a square matrix A is a scalar value that is computed from
¢ Calculating Determinants:

L]
the elements of the matrix. It is defined recursively and can be calculated via

The determinant can be computed using the np.linalg.det() functionin

Laplace expansion or by using elementary row operations.
Python's NumPy library.

e Mathematical Formula (Compact): « Python Code Example:

python

e Fora2x2 matrix A = [a bj| :
c d
numpy np

A = np.array([[1, 21, [3, 41])
det_A = np.linalg.det(A)

det(A) = ad — be
print(

, det_A)

¢ Expanded Formula for a 3x3 Matrix:

a b ¢
e Formatrix A= |d e f
g h 1

det(A) = a(ei — fh) — b(di — fg) + c(dh — eg)

INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

CS316: INTRODUCTION TO DATA SCIENCE

e

Module 5:
Determinants and Rank

5.2 Rank of a Matrix

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

6.2 Rank of a Matrix

o Definition of Rank:

e The rank of a matrix A is the dimension of the vector space generated
(spanned) by its columns. This also corresponds to the maximum number of

linearly independent columns or rows in A.

 Mathematical Description:

e Compact Form:

Rank(A) = dim(col(A))

e Expanded Form:

Rank(A) = number of pivot positions in A = dim(row(A))

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

6.2 Rank of a Matrix

e Importance of Rank:

« System Solutions: Knowing the rank of A is crucial in determining the solvability of
the system Ax = b. If A is of full column rank, the system has a unique solution

when b is in the column space of A.

« Dimensionality and Data Insights: In data science, the rank of the feature matrix
affects model complexity and generalization. A lower rank might indicate redundancy
or correlations among features, suggesting potential for dimensionality reduction.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

6.2 Rank of a Matrix

NumPy Implementation:

. ¢ Determining Rank:
o Numerical Example: 9

e Use np.linalg.matrix_rank() to compute the rank of a matrix.
¢ Problem Statement:

« Python Code Example:
e Calculate the rank of matrix A and discuss its implications.

python (9 Copy code

e Given Matrix A:

numpy np
) 4 1 A =kn§.arrayiF[{ 5 t],. [8, o

rank_A = np.linalg.matrix_ran
A= g 106 % print(, rank_A)

e Solution:

import numpy as np
¢ Calculation reveals that the first two columns of A are linearly dependent A = np.array([[2, 4, 1],
(second column is twice the first), and the third column is linearly independent. {g' 36' 1?} ;
’ ’

rank_A = np.linalg.matrix_rank(A)
print("Rank of Matrix A:", rank_A)

e Rank = 2 (since two columns are linearly independent).

SN o bsE WN e

« Implication: The system Ax = b will have solutions depending on the vector b

. If bis in the span of the columns of A, there will be infinitely many solutions;

;) Rank of Matrix A: 2
otherwise, no solution.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Module 5: Systems
of Linear Equations

5.3 Inverse Matrices

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Inverse Matrices

e 5.2 Inverse Matrices

e Linear Algebra Concept:

¢ Definition of Inverse Matrices:

 Aninverse matrix of a square matrix A is a matrix A1, which when multiplied

by A results in the identity matrix 1.
e Equation:
AA =1
e Properties:
e A must be square and have a non-zero determinant.

o If A isnon-singular (i.e., det(A) # 0), then A~ ! exists.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Numerical Application:

« Example:

. (12 ks

e Given A = [3 4] andb = [11].

« Calculate A1 and solve for x:
x — -1.5
~ |:35

e Confirm solution:

Ax=b

« Calculating Inverses:

e Use np.linalg.inv() to compute the inverse of a matrix.

¢ Code:

python

numpy np

A = np.array([[1, 21, [3, 41])
A_inv = np.linalg.inv(A)

« Using Inverses to Solve Systems:
« Solve Ax = b by computingx = A 'b.
« Code:

python

b = np.array([5, 1)
x = np.dot(A_inv, b)

ANIS KOUBAA | 2024

Full Rank Matrix

« Definition of Full Rank Matrix:

e A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,
thisisexpressedas: el .

Example 1: A 2x2 matrix with full rank

()

e The matrix has 2 rows and 2 columns.

Rank(A) = min(m,n)
Consider the matrix:
e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,
which for m < n, means:

« To check if it's full rank, we need to see if the rows or columns are linearly independent.

Rank(A) =m
. . o « The rank of this matrix is 2 (since both rows are linearly independent).
¢ Full Column Rank: A matrix has full column rank if every column is linearly

independent, applicable when n S m, signified by: Thus, matrix A is full rank, as its rank equals the smaller dimension (in this case, 2).

Rank(A) =n

¢ Invertibility: A square matrix . = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Full Rank Matrix

« Definition of Full Rank Matrix:

¢ A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,
this is expressed as:

Example 2: A 2x2 matrix that is not full rank

2=)

1
1
1
1
1
1
1
1
1
1
|
1
which for m < n, means: |« This matrix also has 2 rows and 2 columns.
1
1
1
1
1
1
1
1
1
1
1
1

Rank(A) = min(m,n)
Consider the matrix:
e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,

« But the second row is just 2 times the first row, meaning they are linearly dependent.
Rank(A) =m

e The rank of this matrix is 1 (since we have only one linearly independent row or column).

¢ Full Column Rank: A matrix has full column rank if every column is linearly
A i = B Thus, matrix B is not full rank because its rank (1) is less than the smaller dimension of the matrix
independent, applicable when n < m, signified by:

Rank(A) =n

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Full Rank Matrix

« Definition of Full Rank Matrix:

¢ A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,

thisis expressed as:
Example 3: A 3x2 matrix with full rank

1 2
C=1(3 4
5 6

o This matrix has 3 rows and 2 columns.

Rank(A) = min(m,n)

Consider the matrix:

e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,

Rank(A) =m « Since it's a rectangular matrix, we check if the rows are independent.

. . . « The rank of this matrix is 2 (since the two columns are linearly independent).

¢ Full Column Rank: A matrix has full column rank if every column is linearly
independent, applicable when n S m, signified by: Thus, matrix C is full rank because its rank (2) equals the smaller dimension, which is the number

1
1
1
1
1
1
1
1
1
1
1
:
1

which for m < n, means: |
1
1
1
1
1
1
1
1
:
1
! of columns (2).
1

Rank(A) =n oo

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

CS316: INTRODUCTION TO DATA SCIENCE

Full Rank Matrix

« Definition of Full Rank Matrix:

¢ A matrix A of dimensions m X n is said to have full rank if the rank of A is
equal to the minimum of its number of rows m and columns n. Mathematically,
this is expressed as:

Rank(A) = min(m,n)
e Properties:

¢ Full Row Rank: A matrix has full row rank if every row is linearly independent,
which for m < n, means:

Rank(A) =m

¢ Full Column Rank: A matrix has full column rank if every column is linearly
independent, applicable when n < m, signified by:

Rank(A) =n

¢ Invertibility: A square matrix m = n with full rank is invertible, which implies:
Rank(A) =n=m

and det(A) # 0, indicating a non-zero determinant.

INTRODUCTION TO DATA SCIENCE

'Example 4: A 3x3 matrix thatis not fullrank

1 2 3
D={4 5 6
7 89

e The rank of this matrix is 2 (since the rows are linearly dependent).

1
: Consider the matrix:

1
1
1
1
1
1
1
1
1
|
: « Specifically, the third row can be written as a linear combination of the first two rows.
1

1

: Thus, matrix D is not full rank because its rank (2) is less than the smaller dimension (which is 3).

ANIS KOUBAA | 2024

Pseudo Inverse Matrices

¢ Linear Algebra Concept:

« Definition of Pseudo Inverse Matrices:

¢ The pseudo inverse, or Moore-Penrose inverse, of a matrix A is a matrix A™
that generalizes the concept of an inverse to non-square matrices or matrices
that are not full rank.

¢ Properties:
o A" exists for any matrix A, square or non-square.
o It satisfies the conditions: AATA = Aand ATAA" = A",
« Difference with Inverse Matrix:
e Aregular inverse only exists for square, non-singular matrices.

e The pseudo inverse can be computed for any matrix, providing a solution (often the
least squares solution) to Ax = b even when A does not have a conventional

inverse.

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

Numerical Application:

2 4 1
1 3|andb=|2]:
0 0 3

« Compute A" and use it to solve for x in Ax = b, providing the least

« Example:

e GivenA =

squares solution.

« Solution:

x=A*b= [_11]

This solution minimizes the squared error || Ax — b

Calculating Pseudo Inverses:

e Use np.linalg.pinv() to compute the pseudo inverse of any matrix.

e Code:

python

9 Copy code

numpy np
A = np.array([[2, 41, [1,

A_pinv = np.linalg.pinv(A)

1, [0, e11)

Using Pseudo Inverses to Solve Systems:

* Solve systems, particularly over-determined or under-determined systems.

e Code:

python) Copy code
b = np.array([1, 2, 3])
x = np.dot(A_pinv, b)

print(7 0)

ANIS KOUBAA | 2024

Linear Regression for Sequence Labeling Using
Pseudo-inverses

« Context and Objective:

e Goal: Apply linear regression to sequence labeling tasks, such as Named Entity
Recognition (NER), to predict the presence of named entities in text snippets using a
simple dataset.

¢ Challenge: Managing over-determined systems where there are more observations (data

points) than features (variables), which is common in text data analysis.
e Dataset and Preparation:

¢ Sample Dataset:

python [_).‘ Copy code

o A collection of text snippets and corresponding binary labels indicate whether each ey s e

shippet contains a named entity (1 for presence, 0 for absence). sklearn.feature_extraction.text TfidfVectorizer

o Text Snippets:

snippets = [

+ "John works at OpenAl." kahels: labels = np.array([1, 0, 1, 0])
« "Yesterday was very sunny." |

s "She bought 300 shares of Tesla." e b= (1] # 1 and 3 contain named entities.

* "He loves to play soccer." 0

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Linear Regression for Sequence Labeling Using
Pseudo-inverses

o Feature Extraction:

Convert text snippets into a numerical format using TF-IDF, a method that transforms text

into a feature vector that represents the importance of words in a document relative to a
corpus.
« Mathematical Formulation:
« Equation: o)
vectorizer = TfidfVectorizer(max_features=5)

A-x=b

A = vectorizer.fit_transform(snippets).toarray()

¢ A Feature matrix derived from text snippets.

Feature names: ['300' 'tesla' 'to' 'very' 'was']

e X: Weight vector to be determined.
Feature matrix (A):

« b: Known labels vector. [[0. 0. 0. 0. 0.]
(0. 0. 0. 0.70710678 0.70710678]
[0.70710678 0.70710678 O. 0. 0.]
[@. 0. 1. 0. 0. 1]

ANIS KOUBAA | 2024

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Linear Regression for Sequence Labeling Using
Pseudo-inverses

e Pseudo-Inverse Computation:

¢ Since A is typically over-determined (more rows than columns), compute the
Moore-Penrose pseudo-inverse A ™ to find the least squares solution to the linear

system:

+ _ (AT AV-1AT
A"=(A"A)A A_pinv = np.linalg.pinv(A)
e Solve for x: X = np.dot(A_pinv, labels)

x=A"b print("weig| , X)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Linear Regression for Sequence Labeling Using
Pseudo-inverses

1 import numpy as np

2 from sklearn.feature_extraction.text import TfidfVectorizer

3

4 # Define the text data and labels

5 snippets = [

6 "“John works at OpenAI.",

7 "Yesterday was very sunny.",

8 "“She bought 300 shares of Tesla.",

12 1 He loves €D play soccer. Feature names: ['300' 'tesla' 'to' 'very' 'was']

11 labels = np.array([1, @0, 1, 0]) FT?;ure matrlxo(A): 0 P 0]
2 i : ; [0. 0. 0. 0.70710678 0.70710678]
13 # Initialize and fit the TF-IDF vectorizer [0.70710678 ©.70710678 ©. 0. 0. 1
14 vectorizer = TfidfVectorizer(max_features=5) # Limit to 5 fe (0. 0. 1. 0. 0. 1
15 A = vectorizer.fit_transform(snippets).toarray() # Feature m golytion vector x: [0.70710678 0.70710678 0. 0. 0.]
16

17 # Display feature names and the feature matrix

18 print("Feature names:", vectorizer.get_feature_names_out())

19 print("Feature matrix (A):\n", A)

20

21 # Step 3: Computing the Pseudo-Inverse and Solving

22 # Compute the pseudo-inverse of A

23 A_pinv = np.linalg.pinv(A)

24 x = np.dot(A_pinv, labels) # Solve for x

25

26 print("Solution vector x:", x)

27

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Module 6:
Systems of Linear Equations

e

Module 6: Systems of
Linear Equations

6.1 Solving Linear
Systems

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

5.1 Solving Linear Systems

» Representing Systems as Ax = b:

« A linear system can be represented in matrix form where A is a matrix of

coefficients, x is a column vector of variables, and b is the result vector.

« Compact Form:

al a2 weate Ain I b1

axn G2 ... Q2 T2 ba
A= 3 y X =) b= .

aml QGm2 - Qmn Tn bm

e Methods for Solving:

e Gaussian Elimination
e LU Decomposition

« Matrix Inversion (if A is invertible)

INTRODUCTION TO DATA SCIENCE

CS316: INTRODUCTION TO DATA SCIENCE

Gaussian Elimination with Numpy

« Solving Equations Using np.linalg.solve :

This function is used to find vector x such that Ax = b.
« Practical Example:

python

numpy np
.array([[3, 11, [1, 2]])

accayv (o 1)

.linalg.solve(A, b)
» X)

Output should show the values of x that satisfy the equation.

ANIS KOUBAA | 2024

Solving Linear Systems with Gaussian Elimination

1 import numpy as np

2

3 # Define the matrix A and vector b

4 A = np.array([[3, 1], [1, 2]]) o

5 b = np.array([9, 8]) e

6 [1 2]]

7 # Solve the linear system AXx = b Vector b:

8 |x = np.linalg.solve(A, b) g

9 Sc;lutio? vector x for Ax = b:
2a: 13

10 # Print the components and the solution

11 print("Matrix A:\n", A)

12 print("\nVector b:\n", b)

13 print("\nSolution vector x for Ax = b:\n", x)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Gaussian Elimination

« Definition:

¢ A method for solving linear equations by transforming the system's matrix into an upper

triangular form using row operations, from which the solutions can be derived through

back-substitution. » Math Equations:

e Consider the system:
* Process: a1z + apxs + azzz = by
: 2 a1 + ATy + ag3z3 = b
 Perform row operations to form a row-echelon matrix. el R
a31T) + 3Ty + azzxz = by

¢ Solve from the bottom row up (back-substitution). . CatisslaniElilation brocese:

¢ NumPy Implementation: « Convert to REF:
| | o ay a g
* NumPy does not have a direct function for Gaussian Elimination, but 0 a) ayy | b

numpy. linalg.solve effectively uses this concept when applicable. 0 0 aj | b

« Solve from the bottom up:

(3 Copy code

b
e I3 = =L
Aa3
bl —al,x3
e Iy = D
a3z

numpy np
np.array([[2, 1, -11, [-3, -1, . zl:u%;auﬂ
np.array([8, -11, =3]) ”
np.linalg.solve(A, b)

print(, X)

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Gaussian Elimination: Numerical Example

e System of Linear Equations:

e Consider the system:
221+ 3y—2=25
4z +y+2z=26
—2x4+5y—32=28

e Step 1: Row Echelon Form (REF):

¢ |nitial Matrix:

5 3 —1 | 8
4 1 2 | 6
=2 § =3 [8

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Gaussian Elimination: Numerical Example

e Step 1: Row Echelon Form (REF):

« Initial Matrix: e Step 2: Back Substitution:

« Begin with the simplest equation (from the last row, if possible), and solve for each

2 3 -1 |5 variable.
4 1 2 | 6
-9 5 —3 | 8 « However, as noted previously, this system leads to an inconsistency, illustrating that

. Gaussian elimination not only solves systems but also identifies no-solution scenarios.
¢ Operations:

. R2=R2—2XR1

(4-2x2)2+(1-2x3)y+(2+2%x1)2=6—-2x5

0z — 5y + 4z = —4 e Solve from the bottom up:

bl
e Ry=R;+ R, ¢ 33:?3-
33
(-2+2)z+(5+3)y+(-3—-1)2=8+5 i By by a3
0z + 8y — 4z = 13 22

b'] —a'lzmg —a’ng

[
ay

° ml

Resulting Matrix:

Simplify further if necessary and attempt back substitution.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

LU Decomposition

« Definition:

e LU Decomposition splits a matrix A into two factors: a lower triangular matrix L and an

upper triangular matrix U, such that A = L x U.
« Mathematical Concept:
e Decomposition Equation:
A=LxU
¢ Where:
o L is alower triangular matrix with ones on the diagonal.
o U is an upper triangular matrix.

e Expanded Form:

e Fora3 x 3 matrix A:

a;p app a3 1 0 0 Uy U2 U3
az ayp ax| = |lb1 1 0| x [0 upy us
a3z a3z azg lsp I3 1 0 0 uss

¢ Application:

« Efficiently solve systems of equations Ax = b, particularly when dealing with multiple
right-hand sides or repeatedly using the same matrix A with different b vectors.

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

e Using scipy.linalg.lu:

e scipy.linalg.lu decomposes A into L and U and can be used to solve for x

using forward and backward substitution.

python

numpy np
scipy.linalg lu

Define the matrix A
A = np.array([[3, 21, [6, 411)

i rm LU
P, L, U= lu(A)
print(

print(

(3 Copy code

ANIS KOUBAA | 2024

LU Decomposition: Numerical Example

e Given Matrix A:

e Consider the matrix:

e Step-by-Step LU Decomposition:
1. Initialize:

e Assume the form A = L x U where L is a lower triangular matrix with 1s on the
diagonal, and U is an upper triangular matrix.

|1 0 _junn ui
> L_[lzl 1]'U_|:0 u22]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

LU Decomposition: Numerical Example

2. Decomposition:
e FromA;; =L1U;1,4=1Xujpsou; =4.
e FromAjs =L;1U;2,3=1X ujasou;x = 3.
e From Ay = LUy, 6 =15 X 4soly = 1.5.
e From Ay, = Ly Uy + LyyUyy, 3 = 1.5 X 3+ 1 X uy, leading to ugy = 0.

« Resulting Matrices L and U:
1 0 4 3
'L_L51}U‘k J
o Verification:

e The product L x U reconstructs A, though in this example, U has a zero row indicating
a degenerate (singular) matrix, which typically signals a problem with the matrix being
non-invertible or poorly conditioned for certain operations.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

« Given Matrix A:

« Consider the matrix:

b

» Step-by-Step LU Decomposition:

1. Initialize:

« Assume the form A = L x U where L is a lower triangular matrix with 1s on the

diagonal, and U is an upper triangular matrix.

(1 0 _|un uie
=l o=[5

ANIS KOUBAA | 2024

LU Decomposition: Solving Ax=b

« Initial Setup:

i h F " i | i 1 s
« Given the matrix A and vector b, we first decompose A into L (lower triangular) and U .. (Stip 95 Sole U=y (Back SUBSHEHORY:

(upper triangular):
¢« Ux = y translates into:
A=LU

« For our previous example: 4 3| |z — 24
° P 0 0| [z2| — |6

4 3 24
A [6 3] n B [30] o Normally, solve for x5 and z;:

* Step 1: Decompose A: « This matrix shows an inconsistency or a special condition due to the zero row in U.
This indicates that the system may be underdetermined or have infinitely many

1 0
e AssumeL = [1.5 1

4 3
] and U = [O 0:| from the decomposition step.
solutions depending on the consistency of the equations.

s Step 2: Solve Ly = b (Forward substitution): Conclusi
« Conclusion:

o Ly = b translates into:)))) o
« In this case, the inconsistency due to the zero row in U means that the matrix A is
1 0f|wn _ 24 singular, and the system does not have a unique solution.
1.5 1| |y 30
« This example highlights a situation where the LU decomposition method exposes the

« Solve for y; and yy:
h L properties of the matrix A that affect the solvability of Ax = b.

e Y1 =24
e 15x24 492 =30= 3, =30—36=—6

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Matrix Inversion

o Definition:

« Matrix Inversion involves calculating the inverse of a matrix A, denoted as A*I, where

A x A1 =1, the identity matrix.
¢ Mathematical Concept:
¢ Inversion Equation:
AxA1l=1I

« Conditions:

¢ A must be square (same number of rows and columns).

¢ A must be non-singular (determinant # 0).

¢ Math Expanded:

. Fora2x2matrixA=[a b]:
c d

1 d -~
At —
ad — be [—C a]

o Application:
 Useful for solving linear systems Ax = b by transforming into x = A~1b.

o Critical in algorithms that require matrix operations like finding solutions to linear
equations, computer graphics transformations, and optimization problems.

+« NumPy Implementation:
e Using np.linalg.inv toinvert the matrix.

python

numpy as np
A = np.array([[1, 2], [3, 4]1)

b = np.array([5, 11])
A_inv = np.linalg.inv(A)
x = np.dot(A_inv, b)

print(

¢ The determinant ad — bc should not be zero to ensure that the inverse exists.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Matrix Inversion: Solving Ax=b

Matrix Inversion: Numerical Example for Solving Ax = b
e Given Matrix A and Vector b:

e Consider the matrix:
e And the vector:

e Objective:

e Solve for x in Ax = b using matrix inversion.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Matrix Inversion: Solving Ax=b

» Step 1: Calculate the Inverse of A

e Formula for Inverse of a 2x2 Matrix:

e = detl(A) [—dc _ab]

« Where a, b, ¢, d are the elements of A:

det(A)=(3%x1)—(4x2)=3-8=-5

=1 1[1 —4]_[-02 08
——Bl|l=2 8| 104 =06

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Matrix Inversion: Solving Ax=b

e Step 2: Solve for x:

e Using Matrix Inversion:

a1 [-02 08724
x=A"b= [0.4 —0.6] [10]

e Calculating x:
ry= (—0.2 X 24) ik (0.8 X 10) =—48+8=3.2

2y = (0.4 x 24) — (0.6 x 10) = 9.6 — 6 = 3.6

x=[54]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Matrix Inversion: Solving Ax=b

1 import numpy as np

2

3 # Define the matrix A

4 A = np.array([[3, 2],

5 [4, 111) Matrix A:

6 [[3 2]

7 # Define the vector b (4 111

8 b = np.array([24, 10]) Inverse of Matrix A:
9 [[-0.2 0.4]
10 # Check if matrix A is invertible by calculating its determinant [0.8 -0.6]]
11 if np.linalg.det(A) != 0:

12 # Calculate the inverse of matrix A Vector b:

13 A_inv = np.linalg.inv(A) 123 10

14 Solution vector x for Ax = b using A's inverse:
15 # Solve for x by multiplying the inverse of A with vector b [3.2 3.6]
16 X = np.dot(A_inv.T, b)

17

18 # Print the components and the solution

19 print("Matrix A:\n", A)

20 print("\nInverse of Matrix A:\n", A_inv)

21 print("\nVector b:\n", b)

22 print("\nSolution vector x for Ax = b using A's inverse:\n", x)

23 else:
print("Matrix A is not invertible, cannot solve using the inverse.")

24

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Solving a Linear System of Equations

¢ Introduction:

¢ Understanding the relationship between matrix operations and their geometric

interpretations can provide deeper insights into solving linear systems.
e Matrix Formulation:

e Matrix Representation:
e The system of equations can be represented in matrix form as:
2 1 5
e Where A is the coefficient matrix, and b is the constant matrix.

e The equation system is:
Ax =D

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Solving a Linear System of Equations

¢ Introduction:

¢ Understanding the relationship between matrix operations and their geometric

interpretations can provide deeper insights into solving linear systems.
e Matrix Formulation:

e Matrix Representation:
e The system of equations can be represented in matrix form as:
2 1 5
e Where A is the coefficient matrix, and b is the constant matrix.

e The equation system is:
Ax =D

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Solving a Linear System of Equations in 2D

* Translation to Linear Equations: Solving Ax=b by Intersection of Two Lines

10.0
e Derived Equations: — 2 +Xx2=5

75+ |] 1 , —_— X1+ 3X2=7

e From the matrix form, the individual linear equations are:

5.0 1 v - -
e 2z, + z, = 5 (From the first row of A and b) \
2.5 1 | ~

e 1 + 3z = T (From the second row of A and b)

+ Graphical Representation: g oA
¢ Plotting Strategy: 723
* These equations can be graphed by rearranging each into y = mz + ¢ form (where =301
1 is independent and z is dependent). 754
e Equation1:z; = 5 — 22, 566 | | |
= -100 -75 -50 -25 0.0 25 5.0 7.5 10.0
+ Equation 2: z; = 2 x1

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Solving a Linear System of Equations in 3D

e Introduction: . . :
Solving Ax=b in 3D by Intersecting Planes

¢ In a three-variable system, each linear equation can be represented as a plane in three-
dimensional space. The solution to the system is the point or line where the planes

intersect.
¢ Equation Setup:
e Consider a system of three equations:
e z4+2y+z=4
e y—z=0
e 2z+y+2=5

e Graphical Representation in 3D:

« Each equation can be graphed as a plane in a 3D space defined by axes z, y, and z.
¢ Plane Equations Derived:

e Planel:z=4—x — 2y

e Plane2:z =y

e Plane3:2=5—-2z —y

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Case Study: Linear Regression

+ Problem Statement:

» Use linear regression to predict house prices based on features such as area, House Price Prediction

00,405

400 ® Actual Prices (2100.,466
— Predicted Prices

number of bedrooms, and age of the house.

» Equation Setup:
350 1
o Represent the problem as Ax = b, where:

300 A

A = Feature Matrix, x = Weight Vector, b = Price Vector

Price (in thousands)

« Feature Matrix A:

250 1

» Rows correspond to houses, columns to features: (1200, 210)

1 Area Bedrooms Age 200] s
A |1 2100 5 10
- 1 1400 3 3 1060 12‘00 14‘00 1660 18b0 20‘00 2260
1 1 800 4 8 Area (square feet)

» Price Vector b:

» Prices of the houses in thousands:
400
b = [250
320

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Case Study: Linear Regression

+ Problem Statement:

» Use linear regression to predict house prices based on features such as area,
House Price Prediction

number of bedrooms, and age of the house.

@ Actual Prices (2100, 4535 vvvvvv
! 4001 Predicted Prices I e
» Objective:
350 1
« Solve for x, the weights that best relate the features to the prices, using least squares to

minimize the difference |Ax — b)|.

8
o

« This illustrates how linear algebra powers fundamental data science tasks, specifically

Price (in thousands)

through techniques like matrix operations and linear systems.

N
a
=]

import numpy as np 1100, 210)

A = np.array(| 200 | :
[1, 21e@], [1, 1400], [1, 18e@], [1, 1500], [1, 1900],

1 [1' 1700]' [1' 1600]' [1' 1850]' [1' 2200]' [1' 1100] 1000 1200 1400 1600 1800 2000 2200

Area (square feet)

b = np.array([400, 250, 320, 260, 340, 330, 290, 315, 405, 210])

x, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)

print("Weight vector (x):", x)

Lo ~NOOWUL S WN

Weight vector (x): [-4.58173935 0.18459577]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Application of Linear Algebra in NLP: Spam Detection

« Context and Objective:

features.
« Mathematical Formulation:
« Feature Matrix (A):
* Rows represent emails.
* Weight Vector (x):
« Target Vector (b):

« Binary labels indicating spam (1) or not spam (0).

CS316: INTRODUCTION TO DATA SCIENCE

Goal: Use linear algebra to classify emails as "spam" or "not spam" based on text

Application: Text classification in Natural Language Processing (NLP).

Columns represent features (e.g., frequency of keywords like "free", "winner").

Contains weights for each feature determining their influence on the classification.

INTRODUCTION TO DATA SCIENCE

« Equation:
Ax=b
« Solve for x using least squares to minimize prediction errors:
x = (ATA)*ATb
« Practical Example:

« An email with higher frequencies of "free" might be classified as spam based on the

model's learned weights.

« NumPy Implementation (Simplified):

python (9 Copy code

numpy np

) a sma ture m
A = np.array([[’ I, I
b = np.array([1, 2, 1, 2])

x = np.linalg.lstsq(A, b, rcond=

ANIS KOUBAA | 2024

Application of Linear Algebra in NLP: Spam Detection

Lo ~NOULSE WN =

WWWNNNRNNNNNNRNRBRRR /B3 2 3 23 2
NP OOWMNOUBRWNRSOWONOUDEWNR®

CS316: INTRODUCTION TO DATA SCIENCE

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder

Sample data (emails)
emails = [
"Free money now!!! Click here.",
"Hi Bob, how about a game of golf tomorrow?",
"Act now, and earn millions without leaving home.",
"Please call your mother.",
"Exclusive offer: earn rewards rapidly with our new credit cards.

Labels for the emails (1 for spam, @ for not spam)
labels = [1, 0, 1, 0, 1]

Step 1: Feature extraction using TF-IDF
vectorizer = TfidfVectorizer(stop_words="english', max_features=10)
A = vectorizer.fit_transform(emails).toarray()

Step 2: Encode labels
le = LabelEncoder()
b = le.fit_transform(labels)

Step 3: Solving for weights x in Ax = b using least squares
Assume X is matrix A, and y is vector b
X, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)

Output results

print("Features names:", vectorizer.get_feature_names_out())
print("Weight vector (x):", x)

print("Residuals:", residuals)

Features names: ['act' 'earn' ‘'home' 'leaving' 'millions' 'money' 'mother' 'new' 'offer’
‘rapidly']
Weight vector (x): [0.40043879 0.68771373 0.40043879 0.40043879 0.40043879 1.

0

Re;iduals: []

0.45196465 0.45196465 0.45196465]

New emails to classify

new_emails = [
"Get your free trial now!!!",
"Meeting rescheduled to next week.",
"Make money fast by investing in stocks!"

1

Transform new emails into feature space using the fitted vectorizer
new_features = vectorizer.transform(new_emails).toarray()

Predict using the linear model (dot product of features and weights)
predictions = np.dot(new_features, x)

Apply a threshold to classify emails as spam or not
spam_threshold = 0.5 # Adjust based on model tuning and validation
predicted_labels = ['spam' if score > spam_threshold else 'not spam' for score in predictions]

Output predictions
for email, label in zip(new_emails, predicted_labels):
print(f"Email: {email}\nClassified as: {label}\n")

Output model details

print("Features names:", vectorizer.get_feature_names_out())
print("wWeight vector (x):", x)

print("Residuals:", residuals)

Email: Get your free trial now!!!
Classified as: not spam

Email: Meeting rescheduled to next week.
Classified as: not spam

Email: Make money fast by investing in stocks!
Classified as: spam

INTRODUCTION TO DATA SCIENCE

ANIS KOUBAA | 2024

Jlalw poll Acola | e ‘\ Robotics &
2 N
princesumN_FY o I @ Internet-of.Things

INTRODUCTION TO Al AND DATA SCIENCE

CHAPTER 4
Integratin with ;
Practical Foundations for Data Science
LECTURE 3

Eigenvalues and Eigenvectors
PCA Case Study

Prof. Anis Koubaa
October 2024

Do not distribute or share any slide without permission of the author.

Introduction to Matrix-Vector Multiplication

e Title: Understanding Matrix-Vector Multiplication

e Content:

e Brief introduction to matrices and vectors.
¢ Definition of matrix-vector multiplication.

e Basic mathematical representation: Av =w

e Where A is a matrix, v is a vector, and w is the transformed vector.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Transforming Vector Orientation

1. Explanation:

e Multiplying by a matrix can rotate a vector in the plane. - Vector Rotation by Matrix Multiplication with Coordinates

B Original Vector (v)

* The rotation matrix R rotates a vector by an angle 8 in a counterclockwise direction. BN Rorated Nector)

2. Example with a 2x2 Rotation Matrix: 10
¢ Matrix R for rotation by 6 degrees: (0.7)0.7)
__|cos(@) —sin(0) 37
~ |sin(f) cos(6)
¢ Vectorv: % 0.0 | ‘ » (10,00
>
)
v =
] —0.5 A
3. Numerical Example:))
3 i Pure Rotation Matrix
° Ohvenid=datu= [o] det(R) = cos®(6) + sin’(9) = 1
e Calculation: -1.5 : T | : .
=15 -1.0 -0.5 0.0 0.5 1.0 1.5
R . N 3 X axis
— Rv— cos(45°) —sin(45°)| (1] _ | %
Y=Y l6in(45°) cos(45°) | |0| T s;i

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

5
1. Explanation: BN Original Vector (v)
Il Scaled Vector (w)
« Discuss how multiplying a vector by a scaling matrix changes its magnitude without 4
altering its direction.
» Scaling matrices multiply each component of the vector by a scaling factor, allowing for 31 i A
differential scaling along different axes.
2. Introduction to Scaling Matrices: 2 =
* Scaling Matrix S for different scaling factors s, and s,: . | o020
& sz 0
0 sy 0
» Where s, and s, are the scaling factors for the x and y components of the vector,
respectively. g : ' ' ' ' .

det(S) = (2)(3) — (0)(0) = 6

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

3. Numerical Example: M} - Original yector: {v)
Il Scaled Vector (w)
* Given: 44
o |2
* Vectorv = 1 3 | (2.0.3.0)
* Scaling factors s, = 2and s, = 3
g,
» Calculation: >
» Applying S to v: 1 A | (1.0.1.0) |
I - 2 0] (1] (2
N |10 3| 1] " |3 0 >
* The vector v is scaled to w, changing its length but not its orientation relative to the
axes. & <5 0 1 2 3 a 5

det(S) = (2)(3) - (0)(0) = 6

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Scaling Vectors with a Scalar

Vector Scaling by Scalar Multiplication

1. Explanation: 10
B Original Vector (v)
« Describe how multiplying a vector by a scalar changes the vector's length but keeps its EER Scaled Vector (w)
orientation (direction) unchanged. 8

« Scalars stretch or compress the magnitude of a vector without altering the angle it makes

with the axes. 6 1 » (3.0.6.0)
2. Mathematical Formulation: w
__ <
: 3. Numerical Example: : ;S |
« Given: | « Given: :)
1 1
1 1
T | o Vectory = B] !
* Vectorv = | | 1.0, 2.0)
Yy \ * Scalara =3 H 2 2
i * Result: :
¢ Scalar o i |
e -
I Y= T e i
T . ! 1 0
e Scalar MUItlpllcatlon: | + The scaled vector w is three times longer than v but points in the same direction. |
T oz 0 i l'l fIS 8' 10
e W =QU = & = X axis
Yy ay

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Module 7:
EigenValues and
EigenVectors

7.1 Intuition

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

3. Numerical Example: = gcf'a‘-?l;’;ai/;’::r’::v‘;’
* Given: 44
Vect = 1
* Vectorv = |, 5 ‘ (2.0, 3.0)
* Scaling factors s, = 2and s, = 3
R
; X 2

« Calculation: >

» Applying S to v: 1 | (1.0.1.0) |

w=so=g 3 1] = |3 |

* The vector v is scaled to w, changing its length but not its orientation relative to the

-1 T T T T
axes. -1 0 1 2 3 - 5
\1’ X axis

det(S) = (2)(3) - (0)(0) = 6

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

* Given: BN Original Vector (v)
Il Scaled Vector (w)
e \Vectorv = [(1)] 44
 Scaling factors s, = 2and s, = 3 " —
e Calculation:
e Applying S to v: £ 5
>

2 0|1 2
w=Sv= [O 3] [O] — [0] 1. | (1.0, 1.0) |

¢ Interpretation:

e The vector v is scaled to w, changing its length but maintaining its direction along the x-
axis.
-1 T T T T
-1 0 1 2 3 4 5
X axis

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Scaling Vectors with Matrices

Vector Scaling by Matrix Multiplication

. < 5
* Given: B Original Vector (v)
0 Il Scaled Vector (w)
e Vectorv = 44
1
» Scaling factors s, = 2and s, = 3 ——
34 1 PLY .- B
e Calculation:
. K|
e Applying S to v: 3 29

w = S'U = [g g] [2] = [g] 1A 1(1.0,1.0) |

e The vector v is scaled to w, changing its length along the y-axis but maintaining its

e Interpretation:

direction along the y-axis. -1 : . . ;

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Eigenvectors and Eigenvalues in Matrix Scaling

Eigenvectors: . . L
Vector Scaling by Matrix Multiplication

« Vectors that remain in the same direction after a matrix transformation. . W Original Vector (v)
B Scaled Vector (w)
¢ In the scaling matrix: Sk ciiil
2 0 41
S =
0 3
The vectors [1, 0] and [0, 1] are eigenvectors. < | —
Eigenvalues:
0
e Scalars by which the eigenvectors are scaled. E 2
¢ For the scaling matrix S:
1 14 1(1.0,1.0) |
e Eigenvector vy, = [0} has eigenvalue A\; = 2.
: 0) 0 ————p
e Eigenvector vy = 1 has eigenvalue A\ = 3.
Conclusion: -1 . . : .
-1 0 1 2 3 4 5
* The matrix S scales the eigenvector [1, 0] by 2 and [0, 1] by 3. s

e These eigenvectors retain their original direction, and the eigenvalues represent the factors
by which they are stretched.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Impact of the Largest Eigenvalue in Transformations

Key Concept:
« Dominant Eigenvalue: The eigenvalue with the highest magnitude has the greatest effect on 5 Vector Scaling by Matrix Multiplication
scaling the corresponding eigenvector. B Original Vector (v)
Il Scaled Vector (w)
¢ In the matrix:
4 -
2 0
34 ‘ (2.0, 3.0)
0
¢ Eigenvalue Ay = 3 (corresponding to vy = [1]) is the largest.
°
« This means the scaling along the y-axis has a greater impact than scaling along the x- 5 24
>
axis.
Application in Data Science: 14 HLO. 100y
¢ In Principal Component Analysis (PCA):
« The direction associated with the largest eigenvalue (principal component) captures the 0 4"‘“*—‘}
most variance in the data.
« The principal components with larger eigenvalues have a greater influence on the = ; ; ! ;
< - : 2 ; & = s - 4
dataset's structure, reducing dimensionality while retaining the most significant L 0 4 5 jxis 3 2
information.
Conclusion:

« The largest eigenvalue not only represents< the greatest scaling effect but also plays a key role

in identifying key patterns and structure:.\l’. data.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Eigenvalues and Eigenvectors Explained Simply

Imagine a Transformation:
e Think of a transformation like stretching, squeezing, or rotating objects in space.

¢ In math, we represent these transformations using matrices that act on vectors.

Special Vectors That Keep Their Direction:
e When we apply a transformation to most vectors, they change direction and length.
« However, eigenvectors are special because they do not change direction when transformed.

 They may get stretched (longer), compressed (shorter), or flipped (direction reversed), but
they still point along the same line.

Scaling Factors—Eigenvalues:
e The amount by which an eigenvector is stretched or compressed is called an eigenvalue.
o |If the eigenvalue is:
e Greater than 1: The eigenvector is stretched.
« Between 0 and 1: The eigenvector is compressed.
« Negative: The eigenvector flips direction.

e Zero: The eigenvector collapses to a point (uncommon in practical scenarios).

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Module 7:
EigenValues and
EigenVectors

7.1 Formal Definitions

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Introduction to Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

« Eigenvalues ()\): Scale factors that alter the magnitude of eigenvectors during a

transformation.

Av = Ay

« Eigenvectors (v): Vectors that, when multiplied by a matrix 4, change only in scale, not

direction.

Importance in Linear Algebra

e Core Concept:

¢ Fundamental to understanding matrix behavior.

¢ Indicative of system properties like stability and oscillation.

e Applications:

¢ Essential in disciplines from physics to economics, crucial for algorithms in Al like

dimensionality reduction.

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

Matrix A:

— o

T
[SCRNC N
W = N
N —

Eigenvalues:
o Eigenvalue 1: 6.1819
e Eigenvalue 2: 1.4116
e Eigenvalue 3: 2.4064
Eigenvectors:
« Eigenvector 1: [—0.7118, —0.4042, —0.5744]
« Eigenvector 2: [—0.5665, —0.1531, 0.8097]
« Eigenvector 3: [0.4153, —0.9018, 0.1200]
Verification of A - v =) - v for the first eigenvalue and eigenvector:
o A-v=[—4.4002,—2.4989, —3.5511]
o A-v=[—-4.4002,—2.4989, —3.5511]

ANIS KOUBAA | 2024

NumPy for Eigenvalues and Eigenvectors

(3 Copy code

fine a a e

A = np.array([[4, 11, [1, 4]1])

eigenvalues, eigenvectors = np.linalg.eig(A)

print(en\ :", eigenvalues)
print("E 1V :\n", eigenvectors)

Explanation

o Matrix A: Represents the system or transformation we are analyzing.
e Function np.linalg.eig : Calculates the eigenvalues and eigenvectors of matrix A.

¢ Eigenvalues: Indicate the magnitude of stretching.

¢ Eigenvectors: Show the directions that remain unchanged (except for scaling) under the

transformation.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

NumPy for Eigenvalues and Eigenvectors

Eigenvectors and Scaling by Eigenvalues

207
HEm Eigenvector v1: [1. 0.]
Il Eigenvector v2: [0. 1.]
15t Emm Stretched v1 (A1 *v1):[2.0.]
: EEm Stretched v2 (A2 *v2): [0. 1.]
10 B A
0.5
A
s 0.0 = 3=
S
-0.5
-1.01
-15¢}
=203 -2 -1 0 1 2
X axis

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

« The blue and green vectors represent the original eigenvectors.
« The scaled (stretched) vectors show how the eigenvectors are scaled by their respective
eigenvalues.
Additionally, the printed values are as follows:
« Eigenvalue 1: 2.00, Eigenvector 1: [1.0.]
« Eigenvalue 2: 1.00, Eigenvector 2: [0.1.]

ANIS KOUBAA | 2024

Intuition Behind Eigenvalues and Eigenvectors

import numpy as np

2

3

4 # Define a 3x3 matrix

5 A= np.array([[4, 1, 2],
6 (1, 3, 11,
7 12,715 311)
8

9 # Compute the eigenvalues and eigenvectors of the matrix A
10 eigenvalues, eigenvectors = np.linalg.eig(A)

11

12 # Print eigenvalues and eigenvectors

13 print("Matrix A:")

14 print(A)

15 print("\nEigenvalues:")
16 for i, eigenvalue in enumerate(2.406420654632711

17 print(f"Eigenvalue {i+1}: {eigenvalue}")

18

19 print("\nEigenvectors:")

20 for i, eigenvector in enumerate(eigenvectors.T): # Transpc
21 print(f"Eigenvector {i+1}: {eigenvector}")

22

23 # Verifying A x v = A % v for the first eigenvalue and eiger
24 v = eigenvectors[:, @] # First eigenvector

25 lambda_ = eigenvalues([@0] # First eigenvalue

26

27 # Compute A % v

28 Av=AQ@v

29

30 # Compute A % v

31 lambda_v = lambda_ * v

32

33 # Print results

34 print("\nVerification of A *x v = A x v for the first eigenval
35 print("A x v =")

36 print(A_v)

37 print("\nA x v =")

float64: eigenvalue

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

Matrix A:
[[4 1 2]
[13 1]
[2 1 3]]

Eigenvalues:

Eigenvalue 1: 6.181943336052388
Eigenvalue 2: 1.4116360093148959
Eigenvalue 3: 2.406420654632711

Eigenvectors:

Eigenvector 1: [-0.71178541 -0.40422217 -0.57442663]
Eigenvector 2: [-0.5664975 -0.15312282 0.80971228]
Eigenvector 3: [0.41526149 -0.90175265 0.12000026]

Verification of A *x v = A % v for the first eigenvalue and eigenvector:
A*x v =
[-4.4002171 -2.49887857 -3.55107291]

Ax vV
[-4.4002171 -2.49887857 -3.55107291]

ANIS KOUBAA | 2024

Mathematical Representation

Mathematical Expression

e Equation:

For matrix A and vector v :

e Expanded Form:

¢ Numerical Application:

e Example with specific values:
3 0] [1] [3
0 2| (1] |2

Eigenvalues: 3, 2

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

The Trace of a Matrix and its Connection to Eigenvalues

Definition: Trace of a Matrix:

o The trace of an n X n matrix A is the sum of the elements on its diagonal.
n
TI‘(A) = Z A,‘,‘
i=1

ap; Gy

, the trace is:
a1 a2

e Example: For matrix A = [

TI‘(A) = a1 + a2

Relationship to Eigenvalues:

e Forann X m matrix A, the trace is also the sum of its eigenvalues A1, Az, ..., Au:

TI(A)=A1+A2++A,,,

o Example:

oo |20
e« Matrix S = [0 3]

e Eigenvalues: Ay =2, A2 =3

o Trace: Tr(S)=2+3=5

Conclusion:

e The trace provides a simple way to understand the sum of the eigenvalues of a square matrix,
and it plays a key role in many applications of linear algebra and data science.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

Numerical Example: 1 # Define a new 3x3 matrix with real eigenvalues
2 B = np.array([[4, 2, 1],
o Given the matrix B: 3 (2, 3, 11,
4 [, 0152211
5
4 2 1 6 # Calculate the trace of the new matrix
B=12 3 1 7 trace_B = np.trace(B)
8
11 2 9 # Calculate the eigenvalues of the new matrix
10 eigenvalues_B, _ = eig(B)
o 11
Trace of the Matrix: 12 # Display results with better print formatting
: s X 13 print("Matrix B:")
e The trace is the sum of the diagonal elements: 14 print(s)
TI‘(B) =44+34+2=9 15 print("\nTrace of B (sum of diagonal elements):")
16 print(f"Trace(B) = {trace_B}")
17
Eigenvalues: 18 print("\nEigenvalues of B:")
19 for i, eigenvalue in enumerate(eigenvalues_B):
e The eigenvalues of this matrix are: 20 print(f"Eigenvalue {i+1}: {eigenvalue:.4f}")
21
22 # Calculate the sum of eigenvalues
° ~ 0.
Al ~ 6.05 23 sum_of_eigenvalues_B = np.sum(eigenvalues_B)
24
e A2 ~ 1.64 25 # Print the sum of eigenvalues and compare with trace
26 print(f"\nSum of Eigenvalues: {sum_of_eigenvalues_B:.4f}")
])\3 ~ 1.31 27 print(f"Trace of B: {trace_B}")
28
" 29 # Check if they are approximately equal
Conclusion: 30 if np.isclose(sum_of_eigenvalues_B, trace_B):
. . 31 print("\nThe sum of the eigenvalues is approximately equal to the trace of the matrix.")
e The trace is equal to the sum of the eigenvalues: 32 else:
33 rint("\nThe sum of the eigenvalues is not equal to the trace of the matrix."
Tr(B) =M+ X +As=6.05+1.64+131=9 > BTt o a :

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

Matrix B:
[[4 2 1]
[2 3 1]
[112]]

Trace of B (sum of diagonal elements):

Trace(B) = 9

Eigenvalues of B:

Eigenvalue 1: 6.0489
Eigenvalue 2: 1.6431
Eigenvalue 3: 1.3080

Sum of Eigenvalues: 9.0000
Trace of B: 9

The sum of the eigenvalues is approximately equal to the trace of the matrix.

CS316: INTRODUCTION TO DATA SCIENCE

O~NOWULSAS WN

Define a new 3x3 matrix with real eigenvalues
B = np.array([[4, 2, 1],

2, 3, 11,

[1, 1 211)

Calculate the trace of the new matrix
trace_B = np.trace(B)

Calculate the eigenvalues of the new matrix
eigenvalues_B, _ = eig(B)

Display results with better print formatting
print("Matrix B:")

print(B)

print(*\nTrace of B (sum of diagonal elements):")
print(f"Trace(B) = {trace_B}")

print("\nEigenvalues of B:")
for i, eigenvalue in enumerate(eigenvalues_B):
print(f"Eigenvalue {i+1}: {eigenvalue:.4f}")

Calculate the sum of eigenvalues
sum_of_eigenvalues_B = np.sum(eigenvalues_B)

Print the sum of eigenvalues and compare with trace
print(f"\nSum of Eigenvalues: {sum_of_eigenvalues_B:.4f}")
print(f“Trace of B: {trace_B}")

Check if they are approximately equal
if np.isclose(sum_of_eigenvalues_B, trace_B):

print("\nThe sum of the eigenvalues is approximately equal to the trace of the matrix.")

else:

print("\nThe sum of the eigenvalues is not equal to the trace of the matrix.")

INTRODUCTION TO DATA SCIENCE

ANIS KOUBAA | 2024

Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

1 # Define a new 3x3 matrix with real eigenvalues
2 B = np.array([[4, 2, 1],

3 2, 3, 11,

4 [5G0 210)

5

6 # Calculate the trace of the new matrix

7 trace_B = np.trace(B)

8

9 # Calculate the eigenvalues of the new matrix
10 eigenvalues_B, _ = eig(B)

11

12 # Display results with better print formatting
13 print("Matrix B:")

14 print(B)

15 print("\nTrace of B (sum of diagonal elements):")
16 print(f"Trace(B) = {trace_B}")

18 print("\nEigenvalues of B:")
19 for i, eigenvalue in enumerate(eigenvalues_B):
20 print(f"Eigenvalue {i+1}: {eigenvalue:.4f}")

22 # Calculate the sum of eigenvalues
23 sum_of_eigenvalues_B = np.sum(eigenvalues_B)

25 # Print the sum of eigenvalues and compare with trace
26 print(f"\nSum of Eigenvalues: {sum_of_eigenvalues_B:.4f}")
27 print(f"Trace of B: {trace_B}")

29 # Check if they are approximately equal
30 if np.isclose(sum_of_eigenvalues_B, trace_B):

31 print("\nThe sum of the eigenvalues is approximately equal to the trace of the matrix.")
32 else:
33 print("\nThe sum of the eigenvalues is not equal to the trace of the matrix.")

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Trace and Eigenvalues of a Non-Diagonal 3x3 Matrix

Matrix A:
2 31
A=1|1 5 4
3 2 6

Trace of A (sum of diagonal elements):
Trace(A) =2+5+6=13
Eigenvalues of A:
e Eigenvalue 1: 9.5618 + 0.00005

e Eigenvalue 2: 1.7191 + 1.4728;5
e Eigenvalue 3: 1.7191 — 1.4728j

Sum of Eigenvalues:

el |

Matrix A:
[[2 3 1]
[15 4]
[3 2 6]]

Trace of A (sum of diagonal elements):
Trace(A) = 13

Eigenvalues of A:

Eigenvalue 1: 9.5618+0.0000j
Eigenvalue 2: 1.7191+1.4728j
Eigenvalue 3: 1.7191-1.4728j

Sum of Eigenvalues: 13.0000+0.0000j
Trace of A: 13

AL+ Az + Ag = 9.5618 + (1.7191 + 1.4728;) + (1.7191 — 1.47285) = 13 + 0j

Conclusion:

¢ The sum of the eigenvalues 13 + 07 is approximately equal to the trace of matrix A, which is

13.

CS316: INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE

ANIS KOUBAA | 2024

Determinant and Eigenvalues of a Matrix

Definition: Determinant:

e The determinant of a square matrix A is a scalar value that describes certain properties of

the matrix, such as:
e Whether the matrix is invertible (non-zero determinant indicates invertibility).
e The scaling factor of the transformation described by the matrix.

« Foramn X m matrix A, the determinant is denoted as det(A).

Relationship to Eigenvalues:

e The determinant of a matrix is the product of its eigenvalues.

If A1, A2, ..., A, are the eigenvalues of matrix A, then:

det(A)=A1XA2X“'X/\n

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Determinant and Eigenvalues of a Matrix

Numerical Example:

e For matrix A:

A=

- DN
- D DN
DO = =

e Eigenvalues: A\ =~ 6.05, A\ =~ 1.64, \3 =~ 1.31
e Determinant:
det(A) = 6.05 x 1.64 x 1.31 =~ 13.00

Conclusion:

e The determinant gives insight into the nature of the matrix transformation, and its value is
directly linked to the eigenvalues by their product.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Determinant and Eigenvalues of a Matrix

1 # Define the 3x3 matrix

2 C = np.array([[4, 2, 1], Matrix C:

3 [2; 3, 17 421

4 [1;: 1, 211 [{2 3 1}

5

6 # Calculate the determinant of the matrix (11 2]]

7 det_C = np.linalg.det(C)

8 Determinant of C: 13.0000
9 # Calculate the eigenvalues of the matrix
10 eigenvalues_C, _ = eig(C) Eigenvalues of C:
11 Eigenvalue 1: 6.0489
12 # Product of the eigenvalues Eigenvalue 2: 1.6431
13 product_eigenvalues_C = np.prod(eigenvalues_C) Eigenvalue 3: 1.3080
14
15 # Printing the results Product of Eigenvalues: 13.0000

16 print(f"Matrix C:\n{C}")

17 print(f"\nDeterminant of C: {det_C:.4f}")

18 print("\nEigenvalues of C:")

19 for i, eigenvalue in enumerate(eigenvalues_C, 1):

The determinant is approximately equal to the product of the eigenvalues.

20 print(f"Eigenvalue {i}: {eigenvalue:.4f}")

21

22 print(f"\nProduct of Eigenvalues: {product_eigenvalues_C:.4f}")
23

24 # Check if determinant and product of eigenvalues match
25 if np.isclose(det_C, product_eigenvalues_C):

26 print("\nThe determinant is approximately equal to the product of the eigenvalues.")
27 else:

28 print("\nThe determinant is not equal to the product of the eigenvalues.")

29

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Properties of Eigenvalues and Eigenvectors

1 # Importing necessary libraries

2 import numpy as np

3

4 # Define a matrix A (3x3 for illustration)

5 A = np.array([[4, 1, 2],

6 [10 3: 1]l

7 £2; 1, 341} Matrix A:

8 [[4 1 2]

9 # Compute the eigenvalues of matrix A I1.3:1]

10 eigenvalues = np.linalg.eigvals(A) [2 1 3]]

11

12 # Compute the trace of A (sum of diagonal elements) 1race of A (sum of diagonal elements): 10.00
13 trace A = np.trace(A) Sum of eigenvalues: 10.00
14 :

. Determinant of A: 21.00

15 # Compute the determinant of A Product of eigenvalues: 21.00
16 det_A = np.linalg.det(A)

17

18 # Compute the sum and product of eigenvalues

19 sum_eigenvalues = np.sum(eigenvalues)
20 product_eigenvalues = np.prod(eigenvalues)

J
e

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Module 7:
EigenValues and
EigenVectors

7.2 Properties of Matrices
with Eigenvalues and
Eigenvectors

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Properties of Matrices with Eigenvalues and Eigenvectors

Key Properties:

1. Square Matrix:
e The matrix must be square (i.e., n X n) to have eigenvalues and eigenvectors.

e Example: A3 X 3 matrix like:

a b c
A=1|d e f
g h 1

2. Non-Singular Matrix (for non-zero eigenvalues):

e A matrix is non-singular if its determinant is non-zero (det(A) # 0).

¢ If the determinant is zero, at least one eigenvalue will be zero, indicating a singular matrix.
3. Real or Complex Eigenvalues:

e Eigenvalues can be either real or complex.

¢ Real symmetric matrices have real eigenvalues, while other matrices may have complex

eigenvalues.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Properties of Matrices with Eigenvalues and Eigenvectors

4. Diagonalizable Matrices:

« A matrix is diagonalizable if it can be written as A = PDP !, where P is the matrix of
eigenvectors and D is the diagonal matrix of eigenvalues.

« Not all matrices are diagonalizable, but those with distinct eigenvalues always are.

5. Eigenvalue Multiplicity:

¢ Algebraic Multiplicity: The number of times an eigenvalue appears as a root of the
characteristic equation.

e Geometric Multiplicity: The number of linearly independent eigenvectors corresponding
to an eigenvalue.

Examples:

e Formatrix A =

=N
= W N
N =

e |t is square, non-singular, and has real eigenvalues and eigenvectors.

Conclusion:

¢ Only square matrices have eigenvalues and eigenvectors, and their properties depend on the
matrix's structure (e.g., singularity, symmetry).

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

ANIS KOUBAA | 2024

e

Module 7:
EigenValues and
EigenVectors

7.2 How to Find
Eigenvalues and
Eigenvectors

éFOR

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Finding Eigenvalues

Step 1: Finding Eigenvalues ()

1. Set up the Characteristic Equation:
det(A— M) =0

o det represents the determinant.
» I is the identity matrix of the same dimension as matrix A.

2. Solve for A:

» The resulting equation will be a polynomial in A.

» The solutions to this polynomial are the eigenvalues of A.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Finding Eigenvalues

Example:

. 14 2|
For a matrix A = [1 3].

1. Set up the characteristic equation:

i3
det(A —) —det[i 3

2. Solve for eigenvalues .

3. For each eigenvalue, solve (A — AI')v = 0 to find the eigenvectors.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step 1: Finding Eigenvalues

1. Set up the characteristic equation:

1 # Define the 2x2 matrix
2 A_example = np.array([[4, 2],

det(A— AI) =0 3 [1, 311)
4

o 5 # Identity matrix
Substituting A and I: 6 I_example = np.eye(2)
7
4 —)\ 2 8 # Symbolic eigenvalue variable (lambda)
det 1 3\ =0 9 from sympy import symbols, Eq, det, Matrix

10

11 # Define lambda symbolically
12 lambda_sym = symbols('lambda’)

(4 - /\)(3 - A) - (2)(1) =0 14 # Define the matrix A - lambdaxI
15 A_lambda = Matrix(A_example) - lambda_sym % Matrix(I_example)
16
17 # Calculate the determinant to find the characteristic equation
18 char_eq = det(A_lambda)

2. Calculate the determinant:

Expanding the determinant:

A2 —-TA+10=0 19
20 # Solve for the eigenvalues (lambda)
3. Solve for A: Solving the quadratic equation: 21 from sympy import solve
22 eigenvalues_example = solve(char_eq, lambda_sym)
A1=2, A=5H S
24 eigenvalues_example
25

The eigenvalues of matrix A are A\; = 2 and A\; = 5.
[2.00000000000000, 5.00000000000000]

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step 2: Finding Eigenvectors

Step 2: Finding Eigenvectors (v)

Now, for each eigenvalue, we will solve (A — AI')v = 0 to find the corresponding eigenvectors.

i

1. ForA = 2:

I

(A— 2D = [412 332]

Solving [? ﬂ [ﬂ = [8],we get:

So, the eigenvector corresponding to A\; = 2 is:

r=-y

2. For Ay = 5:
[4-5 2][-1 2
(A"5I)""[1 3—5]‘[1 —2]

Solvi -1 2| |z _|0 "
olving | 1= = ol Weget

So, the eigenvector corresponding to A2 = 5 is:

T=2y

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Final Result:

« Eigenvalues:

=2 |
o n=s |
» Eigenvectors:
| e ForA =2:v; = 1
! =1 |
e Fordy =5:vy = i

ANIS KOUBAA | 2024

Visualization of the Eigenvectors

Eigenvectors of Matrix A

4
EEN v1:[1,-1] (lambda = 2)

B \2: [2, 1] (lambda = 5) P

5 " Final Result: i

« Eigenvalues:

i i L Al - 2 i

g | 12,1] e =5

£ ! :

.+ Eigenvectors: ;

0 | (1 |

i e ForA =2:v; = _1]

_1- lr1 11 | 2 |

- (1-1] | e Fordy =5:vy = 1]

_2 T T T O
=2 =1 0 1 2 3 4

X-axis

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

e

Module 7:
EigenValues and
EigenVectors

7.3 Principal Component
Analysis (PCA)
A Use Case in Data Science

é FOR ()

INTRODUCTION TO Al AND DATA
SCIENCE

CHAPTER 3
PANDAS AND NUMPY

PANDAS

Motivating Example — Why Use PCA?

¢ |magine you're analyzing a dataset of students' performance across multiple subjects (Math,
Physics, Chemistry, etc.).

¢ Challenge: The dataset has many variables, and we suspect that some subjects are
correlated (e.g., students who do well in Math may also do well in Physics).

¢ Goal: Simplify the dataset by reducing the number of subjects, while retaining the most
important information about student performance.

. S e ey e -

Dataset: data = {
arasen '‘Math': (85, 78, 92, 88, 76, 95, 89, 84, 91, 87],
: - 2 'Physics': [82, 75, 9@, 85, 73, 94, 88, 81, 89, 86],
* 10 students with scores in 4 subjects. 'Chemistry': [88, 79, 94, 91, 77, 97, 90, 86, 92, 89],
’ - ;] 'English': [79, 74, 85, 8@, 70, 88, 83, 77, 84, 82
e Our goal is to simplify the analysis of student performance by reducing the number of } DEEas [e B 621

features (subjects) while keeping the most important information.

Student Math Physics Chemistry English
1 85 82 88 79
2 78 75 79 74
3 92 90 94 85
10 87 86 89 82

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step 1 - Standardize the Data (Normalization)

Equation:
X = p
7 =
o
Where:
Convert the data into a DataFrame
o X is the original data. df = pd.DataFrame(data)
~ is the mean. # Step 1: Standardize the data
K # Subtract the mean and divide by standard deviation to standardize
R T df_standardized = (df - df.mean()) / df.std()
Numerical Example (Math):
85 — 87.7
ZMath, Student 1 — W = —0.49

This step ensures that each subject contributes equally to the analysis.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

ANIS KOUBAA | 2024

Step 1 - Standardize the Data (Normalization)

Student
1

2

CS316: INTRODUCTION TO DATA SCIENCE

Math
-0.25
-1.42
0.92
0.25
-1.75
1.42
0.42
-0.42
0.75

0.08

Physics Chemistry
-0.35 -0.05
-1.40 -1.49
0.86 0.91
0.1 0.43
-1.70 -1.81
1.46 1.39
0.56 0.27
-0.50 -0.37
0.71 0.59
0.26 0.1

INTRODUCTION TO DATA SCIENCE

English
-0.22
-1.15
0.89
-0.04
-1.88
1.44
0.52
-0.59
0.70

0.33

ANIS KOUBAA | 2024

Step 2 - Calculate the Covariance Matrix

What is the Covariance Matrix?

¢ |t shows how much each feature (subject) varies with others.

Covariance Matrix:

Var(Math) Cov(Math, Physics)

Cov — | Cov(Physics, Math) Var(Physics)

Example:

e Math and Physics might have high covariance because they are closely related.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step 2 - Covariance Matrix and Eigen Decomposition

Covariance Matrix: The covariance matrix represents how the variables (subjects) vary together.

Equation for Covariance:

Cov(X,Y) = ——= 3 (X~ X)(%i - ¥)

Eigenvalues and Eigenvectors:
o Eigenvalues tell us the amount of variance explained by each principal component.

» Eigenvectors define the direction of each principal component.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step 2 - Calculate the Covariance Matrix

Step 2: Calculate the Covariance Matrix Covariance Hatrdxs

; : [[1. 0.99465467 0.99265481 0.98433819]
cov_matrix = np.cov(df_standardized.T) [0.99465467 1. 0.98031195 ©.99155631]
print("\nCovariance Matrix:\n", cov_matrix) [0.99265481 0.98031195 1. 0.96962717]

[0.98433819 0.99155631 0.96962717 1. 11

1.00 0.99 0.99 0.98'
0.99 1.00 0.98 0.99
0.99 0.98 1.00 0.97
0.98 0.99 0.97 1.00

Covariance Matrix =

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step 3 - Eigen Decomposition

« Eigenvalues:

Eigenvalues _ [39566, 00338, 00079, 00016] ### Step 3: Compute Eigenvalues and Eigenvectors of the Covariance Matrix

« Eigenvectors:

0.5019
0.5013
0.4982
0.4986

Interpretation:

0.2018
—0.2614
0.6969
—0.6366

eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

print("\nEigenvalues:\n", eigenvalues)
print("\nEigenvectors:\n", eigenvectors)

—0.3465 —0.7664

—0.6227 0.5409
0.3959 0.3308
0.5792 —0.1029

¢ The first eigenvalue (3.9566) explains the largest portion of the variance, and the first

eigenvector points in the direction of maximum variation.

CS316: INTRODUCTION TO DATA SCIENCE

Eigenvalues:
[3.95661230e+00 3.38356070e-02 1.65383113e-03 7.89826523e-03]

Eigenvectors:
[[0.50190456 0.20177656 -0.76638646 -0.34645321]
[0.50125904 -0.26142512 0.54094842 -0.62271268]
[0.49822683 0.69686993 0.33080625 0.39586558]
[0.49859925 -0.63664388 -0.1029263 0.57921458]]

INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Step4 - Sorting Eigenvalues and Eigenvectors

Goal: Arrange the eigenvalues and their corresponding eigenvectors in descending order of

importance (variance explained).

Numerical Results:

¢ Eigenvalues (sorted in descending order):

A1 = 3.9566, A =0.0338, A3 =0.0079, A4=0.0016
¢ Eigenvectors (sorted based on the eigenvalues):
0.5019 0.2018
. 0.5013 . —0.2614
Eigenvector;, = 0.4982| ° Eigenvector, = 0.6969 | >
0.4986 —0.6366

Interpretation:

¢ The first eigenvalue (A1 = 3.9566) explains the majority of the variance in the data.

e Eigenvector 1is the direction that captures the most variation in the data.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE

Step 4: Sort Eigenvalues and Eigenvectors (i
Sort the eigenvalues and their corresponding e
sorted_indices = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues([sorted_indices]
eigenvectors = eigenvectors[:, sorted_indices]

Eigenvalues:
[3.95661230e+00 3.38356070e-02 1.65383113e-03 7.89826523e-03]

Eigenvectors:
[[0.50190456 ©.20177656 -0.76638646 -0.34645321]
[0.50125904 -0.26142512 ©0.54094842 -0.62271268]
[0.49822683 0.69686993 0.33080625 0.39586558]
[©.49859925 -0.63664388 -0.1029263 ©.57921458]]

ANIS KOUBAA | 2024

PCA Transformation

Goal: Project the standardized data onto the eigenvectors (principal components).
Transformation Equation:
Zpc = Xstandardized * Eigenvector

PCA Transformed Data:

Student PC1 PC2 PC3 PC4

1 -0.434 0.148 0.155 0.011

2 -2.727 -0.227 0.113 -0.044

3 1.788 0.031 0.021 -0.029

4 0.375 0.347 -0.003 0.012

10 0.392 -0.184 0.048 0.077
Interpretation:

¢ The dataset has been transformed into the principal component space, where each student is
now represented by principal components (PC1, PC2, PC3, PC4).

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

PCA Transformation

Goal: Project standardized data onto principal components (eigenvectors).

Compact Transformation Equation:

Zpc = Xtandardized * Bigenvector

Where:
o Xitandardized 1S the matrix of standardized data.
» Eigenvector is the matrix of eigenvectors.

e Zpc is the transformed data in principal component space.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

PCA Transformation

Goal: Project standardized data onto principal components (eigenvectors).

Compact Transformation Equation:

Zpc = Xstandardized * Bigenvector

Where:
o Xtandardized iS the matrix of standardized data.
« Eigenvector is the matrix of eigenvectors.

e Zpc is the transformed data in principal component space.

Expanded Equation for PC1:

For each student (row in the dataset), the principal component Zpc; is computed as:
Zpcy = (X1 x eq1) + (X3 X e13) + (X5 X ey3) + (X4 ¥ e1q)
Where:

o X, X5, X3, X, are the standardized values for Math, Physics, Chemistry, and English.

* €11, €12, €13, €14 are the elements of the first eigenvector.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Numerical Application (Student 1)

Student Math Physics Chemistry English
e Standardized data for Student 1: 1 -0.25 -0.35 -0.05 022

X =[-025 —-0.35 —0.05 —0.22]

« First Eigenvector:

[0.5019]
0.5013
0.4982

0.4986

Eigenvector; =

« Computation of Zpcy:
Zpc1 = (—0.25 x 0.5019) + (—0.35 x 0.5013) + (—0.05 x 0.4982) + (—0.22 x 0.4986)

Zpc1 = —0.1255 + —0.1755 + —0.0249 + —0.1097 = —0.434

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Numerical Application (Student 1)

Student Math Physics Chemistry English
A -0.25 -0.35 -0.05 -0.22
Numerical Application for PC2 (Student 1):
e Second Eigenvector:
[0.2018 |
Eigenvector, = ~H:2004
& 27 | 0.6969
—0.6366

« Computation of Zpca:
Zypcy = (—0.25 x 0.2018) + (—0.35 x —0.2614) + (—0.05 x 0.6969) + (—0.22 x —0.6366)

Zpos = —0.0505 + 0.0915 + —0.0348 + 0.1401 = 0.147

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

Numerical Application (Student 1)

Transformed Data for Student 1:

e PC1:—0.434
e PC2: 0.147

Summary:
e PC1represents the direction with the highest variance (captured by Eigenvector 1).
e PC2 adds more nuanced variation (captured by Eigenvector 2).

e This transformation reduces data dimensionality while retaining essential patterns.

CS316: INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE ANIS KOUBAA | 2024

